File: GB_kroner_template.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (181 lines) | stat: -rw-r--r-- 7,106 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//------------------------------------------------------------------------------
// GB_kroner_template: Kronecker product, C = kron (A,B)
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C = kron(A,B) where op determines the binary multiplier to use.  The type of
// C is the ztype of the operator.  C is hypersparse if either A or B are
// hypersparse, full if both A and B are full, or sparse otherwise.  C is never
// constructed as bitmap.  This template does not need access to C->h if C
// is hypersparse, so it works the same if C is sparse or hypersparse.

{

    //--------------------------------------------------------------------------
    // get inputs
    //--------------------------------------------------------------------------

    #ifdef GB_JIT_KERNEL
    GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
    GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
    const int64_t avlen = A->vlen ;

    GB_Bp_DECLARE (Bp, const) ; GB_Bp_PTR (Bp, B) ;
    GB_Bh_DECLARE (Bh, const) ; GB_Bh_PTR (Bh, B) ;
    const int64_t bvlen = B->vlen ;
    const int64_t bnvec = B->nvec ;

    GB_Cp_DECLARE (Cp,      ) ; GB_Cp_PTR (Cp, C) ;
    GB_C_NVALS (cnz) ;
    const int64_t cnvec = C->nvec ;
    const int64_t cvlen = C->vlen ;
    #endif

    GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
    GB_Bi_DECLARE (Bi, const) ; GB_Bi_PTR (Bi, B) ;
    GB_Ci_DECLARE (Ci,      ) ; GB_Ci_PTR (Ci, C) ;

    const GB_A_TYPE *restrict Ax = (GB_A_TYPE *) A->x ;
    const GB_B_TYPE *restrict Bx = (GB_A_TYPE *) B->x ;
          GB_C_TYPE *restrict Cx = (GB_C_TYPE *) C->x ;

    //--------------------------------------------------------------------------
    // C = kron (A,B)
    //--------------------------------------------------------------------------

    int tid ;
    #pragma omp parallel for num_threads(nthreads) schedule(static)
    for (tid = 0 ; tid < nthreads ; tid++)
    {

        //----------------------------------------------------------------------
        // get the iso values of A and B
        //----------------------------------------------------------------------

        GB_DECLAREA (a) ;
        if (GB_A_ISO)
        { 
            GB_GETA (a, Ax, 0, true) ;
        }
        GB_DECLAREB (b) ;
        if (GB_B_ISO)
        { 
            GB_GETB (b, Bx, 0, true) ;
        }

        //----------------------------------------------------------------------
        // construct the task to compute Ci,Cx [pC:pC_end-1]
        //----------------------------------------------------------------------

        int64_t pC, pC_end ;
        GB_PARTITION (pC, pC_end, cnz, tid, nthreads) ;

        // find where this task starts in C
        int64_t kC_task = GB_search_for_vector (Cp, GB_Cp_IS_32, pC, 0, cnvec,
            cvlen) ;
        int64_t pC_delta = pC - GBp_C (Cp, kC_task, cvlen) ;

        //----------------------------------------------------------------------
        // compute C(:,kC) for all vectors kC in this task
        //----------------------------------------------------------------------

        for (int64_t kC = kC_task ; kC < cnvec && pC < pC_end ; kC++)
        {

            //------------------------------------------------------------------
            // get the vectors C(:,jC), A(:,jA), and B(:,jB)
            //------------------------------------------------------------------

            // C(:,jC) = kron (A(:,jA), B(:,jB), the (kC)th vector of C,
            // where jC = GBh_C (Ch, kC)
            int64_t kA = kC / bnvec ;
            int64_t kB = kC % bnvec ;

            // get A(:,jA), the (kA)th vector of A
            int64_t jA = GBh_A (Ah, kA) ;
            int64_t pA_start = GBp_A (Ap, kA, avlen) ;
            int64_t pA_end   = GBp_A (Ap, kA+1, avlen) ;

            // get B(:,jB), the (kB)th vector of B
            int64_t jB = GBh_B (Bh, kB) ;
            int64_t pB_start = GBp_B (Bp, kB, bvlen) ;
            int64_t pB_end   = GBp_B (Bp, kB+1, bvlen) ;
            int64_t bknz = pB_end - pB_start ;

            // shift into the middle of A(:,jA) and B(:,jB) for the first
            // vector of C for this task.
            int64_t pA_delta = 0 ;
            int64_t pB_delta = 0 ;
            if (kC == kC_task && bknz > 0)
            { 
                pA_delta = pC_delta / bknz ;
                pB_delta = pC_delta % bknz ;
            }

            //------------------------------------------------------------------
            // for all entries in A(:,jA), skipping entries for first vector
            //------------------------------------------------------------------

            int64_t pA = pA_start + pA_delta ;
            pA_delta = 0 ;
            for ( ; pA < pA_end && pC < pC_end ; pA++)
            {

                //--------------------------------------------------------------
                // a = A(iA,jA), typecasted to op->xtype
                //--------------------------------------------------------------

                int64_t iA = GBi_A (Ai, pA, avlen) ;
                int64_t iAblock = iA * bvlen ;
                if (!GB_A_ISO)
                { 
                    GB_GETA (a, Ax, pA, false) ;
                }

                //--------------------------------------------------------------
                // for all entries in B(:,jB), skipping entries for 1st vector
                //--------------------------------------------------------------

                // scan B(:,jB), skipping to the first entry of C if this is
                // the first time B is accessed in this task
                int64_t pB = pB_start + pB_delta ;
                pB_delta = 0 ;
                for ( ; pB < pB_end && pC < pC_end ; pB++)
                { 

                    //----------------------------------------------------------
                    // b = B(iB,jB), typecasted to op->ytype
                    //----------------------------------------------------------

                    int64_t iB = GBi_B (Bi, pB, bvlen) ;
                    if (!GB_B_ISO)
                    { 
                        GB_GETB (b, Bx, pB, false) ;
                    }

                    //----------------------------------------------------------
                    // C(iC,jC) = A(iA,jA) * B(iB,jB)
                    //----------------------------------------------------------

                    if (!GB_C_IS_FULL)
                    { 
                        // save the row index iC
                        // Ci [pC] = iAblock + iB ;
                        GB_ISET (Ci, pC, iAblock + iB) ;
                    }
                    // Cx [pC] = op (a, b)
                    if (!GB_C_ISO)
                    { 
                        GB_KRONECKER_OP (Cx, pC, a, iA, jA, b, iB, jB) ;
                    }
                    pC++ ;
                }
            }
        }
    }
}