File: GB_math.h

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (1254 lines) | stat: -rw-r--r-- 54,923 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
//------------------------------------------------------------------------------
// GB_math.h: definitions for complex types, and mathematical operators
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "cast/GB_casting.h"

#ifndef GB_MATH_H
#define GB_MATH_H

//------------------------------------------------------------------------------
// integer division
//------------------------------------------------------------------------------

// The GJ_idiv* definitions are used in JIT kernels only.

// Integer division is done carefully so that GraphBLAS does not terminate the
// user's application on divide-by-zero.  To compute x/0: if x is zero, the
// result is zero (like NaN).  if x is negative, the result is the negative
// integer with biggest magnitude (like -infinity).  if x is positive, the
// result is the biggest positive integer (like +infinity).

inline int8_t GB_idiv_int8 (int8_t x, int8_t y)
{
    // returns x/y when x and y are int8_t
    if (y == -1)
    {
        // INT32_MIN/(-1) causes floating point exception; avoid it
        return (-x) ;
    }
    else if (y == 0)
    {
        // zero divided by zero gives 'integer Nan'
        // x/0 where x is nonzero: result is integer -Inf or +Inf
        return ((x == 0) ? 0 : ((x < 0) ? INT8_MIN : INT8_MAX)) ;
    }
    else
    {
        // normal case for signed integer division
        return (x / y) ;
    }
}

#define GJ_idiv_int8_DEFN                                                \
"int8_t GJ_idiv_int8 (int8_t x, int8_t y)                            \n" \
"{                                                                   \n" \
"    if (y == -1)                                                    \n" \
"    {                                                               \n" \
"        return (-x) ;                                               \n" \
"    }                                                               \n" \
"    else if (y == 0)                                                \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : ((x < 0) ? INT8_MIN : INT8_MAX)) ;   \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline int16_t GB_idiv_int16 (int16_t x, int16_t y)
{
    // returns x/y when x and y are int16_t
    if (y == -1)
    {
        // INT32_MIN/(-1) causes floating point exception; avoid it
        return (-x) ;
    }
    else if (y == 0)
    {
        // zero divided by zero gives 'integer Nan'
        // x/0 where x is nonzero: result is integer -Inf or +Inf
        return ((x == 0) ? 0 : ((x < 0) ? INT16_MIN : INT16_MAX)) ;
    }
    else
    {
        // normal case for signed integer division
        return (x / y) ;
    }
}

#define  GJ_idiv_int16_DEFN                                              \
"int16_t GJ_idiv_int16 (int16_t x, int16_t y)                        \n" \
"{                                                                   \n" \
"    if (y == -1)                                                    \n" \
"    {                                                               \n" \
"        return (-x) ;                                               \n" \
"    }                                                               \n" \
"    else if (y == 0)                                                \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : ((x < 0) ? INT16_MIN : INT16_MAX)) ; \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline int32_t GB_idiv_int32 (int32_t x, int32_t y)
{
    // returns x/y when x and y are int32_t
    if (y == -1)
    {
        // INT32_MIN/(-1) causes floating point exception; avoid it
        return (-x) ;
    }
    else if (y == 0)
    {
        // zero divided by zero gives 'integer Nan'
        // x/0 where x is nonzero: result is integer -Inf or +Inf
        return ((x == 0) ? 0 : ((x < 0) ? INT32_MIN : INT32_MAX)) ;
    }
    else
    {
        // normal case for signed integer division
        return (x / y) ;
    }
}

#define  GJ_idiv_int32_DEFN                                              \
"int32_t GJ_idiv_int32 (int32_t x, int32_t y)                        \n" \
"{                                                                   \n" \
"    if (y == -1)                                                    \n" \
"    {                                                               \n" \
"        return (-x) ;                                               \n" \
"    }                                                               \n" \
"    else if (y == 0)                                                \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : ((x < 0) ? INT32_MIN : INT32_MAX)) ; \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline int64_t GB_idiv_int64 (int64_t x, int64_t y)
{
    // returns x/y when x and y are int64_t
    if (y == -1)
    {
        // INT32_MIN/(-1) causes floating point exception; avoid it
        return (-x) ;
    }
    else if (y == 0)
    {
        // zero divided by zero gives 'integer Nan'
        // x/0 where x is nonzero: result is integer -Inf or +Inf
        return ((x == 0) ? 0 : ((x < 0) ? INT64_MIN : INT64_MAX)) ;
    }
    else
    {
        // normal case for signed integer division
        return (x / y) ;
    }
}

#define  GJ_idiv_int64_DEFN                                              \
"int64_t GJ_idiv_int64 (int64_t x, int64_t y)                        \n" \
"{                                                                   \n" \
"    if (y == -1)                                                    \n" \
"    {                                                               \n" \
"        return (-x) ;                                               \n" \
"    }                                                               \n" \
"    else if (y == 0)                                                \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : ((x < 0) ? INT64_MIN : INT64_MAX)) ; \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline uint8_t GB_idiv_uint8 (uint8_t x, uint8_t y)
{
    if (y == 0)
    {
        // x/0:  0/0 is integer Nan, otherwise result is +Inf
        return ((x == 0) ? 0 : UINT8_MAX) ;
    }
    else
    {
        // normal case for unsigned integer division
        return (x / y) ;
    }
}

#define  GJ_idiv_uint8_DEFN                                              \
"uint8_t GJ_idiv_uint8 (uint8_t x, uint8_t y)                        \n" \
"{                                                                   \n" \
"    if (y == 0)                                                     \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : UINT8_MAX) ;                         \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline uint16_t GB_idiv_uint16 (uint16_t x, uint16_t y)
{
    if (y == 0)
    {
        // x/0:  0/0 is integer Nan, otherwise result is +Inf
        return ((x == 0) ? 0 : UINT16_MAX) ;
    }
    else
    {
        // normal case for unsigned integer division
        return (x / y) ;
    }
}

#define   GJ_idiv_uint16_DEFN                                            \
"uint16_t GJ_idiv_uint16 (uint16_t x, uint16_t y)                    \n" \
"{                                                                   \n" \
"    if (y == 0)                                                     \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : UINT16_MAX) ;                        \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline uint32_t GB_idiv_uint32 (uint32_t x, uint32_t y)
{
    if (y == 0)
    {
        // x/0:  0/0 is integer Nan, otherwise result is +Inf
        return ((x == 0) ? 0 : UINT32_MAX) ;
    }
    else
    {
        // normal case for unsigned integer division
        return (x / y) ;
    }
}

#define   GJ_idiv_uint32_DEFN                                            \
"uint32_t GJ_idiv_uint32 (uint32_t x, uint32_t y)                    \n" \
"{                                                                   \n" \
"    if (y == 0)                                                     \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : UINT32_MAX) ;                        \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

inline uint64_t GB_idiv_uint64 (uint64_t x, uint64_t y)
{
    if (y == 0)
    {
        // x/0:  0/0 is integer Nan, otherwise result is +Inf
        return ((x == 0) ? 0 : UINT64_MAX) ;
    }
    else
    {
        // normal case for unsigned integer division
        return (x / y) ;
    }
}

#define   GJ_idiv_uint64_DEFN                                            \
"uint64_t GJ_idiv_uint64 (uint64_t x, uint64_t y)                    \n" \
"{                                                                   \n" \
"    if (y == 0)                                                     \n" \
"    {                                                               \n" \
"        return ((x == 0) ? 0 : UINT64_MAX) ;                        \n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        return (x / y) ;                                            \n" \
"    }                                                               \n" \
"}"

//------------------------------------------------------------------------------
// complex division
//------------------------------------------------------------------------------

// The GJ_FC*_div definitions are used in JIT kernels only.

// complex division is problematic.  It is not supported at all on MS Visual
// Studio.  With other compilers, complex division exists but it has different
// NaN and Inf behavior as compared with MATLAB, which causes the tests to
// fail.  As a result, the built-in complex division is not used, even if the
// compiler supports it.

// Three cases below are from ACM Algo 116, R. L. Smith, 1962.

inline GxB_FC64_t GB_FC64_div (GxB_FC64_t x, GxB_FC64_t y)
{
    double xr = GB_creal (x) ;
    double xi = GB_cimag (x) ;
    double yr = GB_creal (y) ;
    double yi = GB_cimag (y) ;
    int yr_class = fpclassify (yr) ;
    int yi_class = fpclassify (yi) ;
    if (yi_class == FP_ZERO)
    {
        // (zr,zi) = (xr,xi) / (yr,0)
        return (GB_CMPLX64 (xr / yr, xi / yr)) ;
    }
    else if (yr_class == FP_ZERO)
    {
        // (zr,zi) = (xr,xi) / (0,yi) = (xi,-xr) / (yi,0)
        return (GB_CMPLX64 (xi / yi, -xr / yi)) ;
    }
    else if (yi_class == FP_INFINITE && yr_class == FP_INFINITE)
    {
        // Using Smith's method for a very special case
        double r = (signbit (yr) == signbit (yi)) ? (1) : (-1) ;
        double d = yr + r * yi ;
        return (GB_CMPLX64 ((xr + xi * r) / d, (xi - xr * r) / d)) ;
    }
    else if (fabs (yr) >= fabs (yi))
    {
        // Smith's method (1st case)
        double r = yi / yr ;
        double d = yr + r * yi ;
        return (GB_CMPLX64 ((xr + xi * r) / d, (xi - xr * r) / d)) ;
    }
    else
    {
        // Smith's method (2nd case)
        double r = yr / yi ;
        double d = r * yr + yi ;
        return (GB_CMPLX64 ((xr * r + xi) / d, (xi * r - xr) / d)) ;
    }
}

#define     GJ_FC64_div_DEFN                                             \
"GxB_FC64_t GJ_FC64_div (GxB_FC64_t x, GxB_FC64_t y)                 \n" \
"{                                                                   \n" \
"    double xr = GB_creal (x) ;                                      \n" \
"    double xi = GB_cimag (x) ;                                      \n" \
"    double yr = GB_creal (y) ;                                      \n" \
"    double yi = GB_cimag (y) ;                                      \n" \
"    int yr_class = fpclassify (yr) ;                                \n" \
"    int yi_class = fpclassify (yi) ;                                \n" \
"    if (yi_class == FP_ZERO)                                        \n" \
"    {                                                               \n" \
"        return (GJ_CMPLX64 (xr / yr, xi / yr)) ;                    \n" \
"    }                                                               \n" \
"    else if (yr_class == FP_ZERO)                                   \n" \
"    {                                                               \n" \
"        return (GJ_CMPLX64 (xi / yi, -xr / yi)) ;                   \n" \
"    }                                                               \n" \
"    else if (yi_class == FP_INFINITE && yr_class == FP_INFINITE)    \n" \
"    {                                                               \n" \
"        double r = (signbit (yr) == signbit (yi)) ? (1) : (-1) ;    \n" \
"        double d = yr + r * yi ;                                    \n" \
"        return (GJ_CMPLX64 ((xr + xi * r) / d, (xi - xr * r) / d)) ;\n" \
"    }                                                               \n" \
"    else if (fabs (yr) >= fabs (yi))                                \n" \
"    {                                                               \n" \
"        double r = yi / yr ;                                        \n" \
"        double d = yr + r * yi ;                                    \n" \
"        return (GJ_CMPLX64 ((xr + xi * r) / d, (xi - xr * r) / d)) ;\n" \
"    }                                                               \n" \
"    else                                                            \n" \
"    {                                                               \n" \
"        double r = yr / yi ;                                        \n" \
"        double d = r * yr + yi ;                                    \n" \
"        return (GJ_CMPLX64 ((xr * r + xi) / d, (xi * r - xr) / d)) ;\n" \
"    }                                                               \n" \
"}"

inline GxB_FC32_t GB_FC32_div (GxB_FC32_t x, GxB_FC32_t y)
{
    // single complex division: cast double complex, do the division,
    // and then cast back to single complex.
    double xr = (double) GB_crealf (x) ;
    double xi = (double) GB_cimagf (x) ;
    double yr = (double) GB_crealf (y) ;
    double yi = (double) GB_cimagf (y) ;
    GxB_FC64_t zz = GB_FC64_div (GB_CMPLX64 (xr, xi), GB_CMPLX64 (yr, yi)) ;
    return (GB_CMPLX32 ((float) GB_creal (zz), (float) GB_cimag (zz))) ;
}

#define     GJ_FC32_div_DEFN                                                \
"GxB_FC32_t GJ_FC32_div (GxB_FC32_t x, GxB_FC32_t y)                    \n" \
"{                                                                      \n" \
"    double xr = (double) GB_crealf (x) ;                               \n" \
"    double xi = (double) GB_cimagf (x) ;                               \n" \
"    double yr = (double) GB_crealf (y) ;                               \n" \
"    double yi = (double) GB_cimagf (y) ;                               \n" \
"    GxB_FC64_t zz ;                                                    \n" \
"    zz = GJ_FC64_div (GJ_CMPLX64 (xr, xi), GJ_CMPLX64 (yr, yi)) ;      \n" \
"    return (GJ_CMPLX32 ((float) GB_creal(zz), (float) GB_cimag(zz))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = x^y: wrappers for pow, powf, cpow, and cpowf
//------------------------------------------------------------------------------

//      if x or y are NaN, then z is NaN
//      if y is zero, then z is 1
//      if (x and y are complex but with zero imaginary parts, and
//          (x >= 0 or if y is an integer, NaN, or Inf)), then z is real
//      else use the built-in C library function, z = pow (x,y)

inline float GB_powf (float x, float y)
{
    int xr_class = fpclassify (x) ;
    int yr_class = fpclassify (y) ;
    if (xr_class == FP_NAN || yr_class == FP_NAN)
    {
        // z is nan if either x or y are nan
        return (NAN) ;
    }
    if (yr_class == FP_ZERO)
    {
        // z is 1 if y is zero
        return (1) ;
    }
    // otherwise, z = powf (x,y)
    return (powf (x, y)) ;
}

#define GJ_powf_DEFN                                                     \
 "float GJ_powf (float x, float y)                                   \n" \
"{                                                                   \n" \
"    #ifndef GB_CUDA_KERNEL                                          \n" \
"    int xr_class = fpclassify (x) ;                                 \n" \
"    int yr_class = fpclassify (y) ;                                 \n" \
"    if (xr_class == FP_NAN || yr_class == FP_NAN)                   \n" \
"    {                                                               \n" \
"        return (NAN) ;                                              \n" \
"    }                                                               \n" \
"    if (yr_class == FP_ZERO)                                        \n" \
"    {                                                               \n" \
"        return (1) ;                                                \n" \
"    }                                                               \n" \
"    #endif                                                          \n" \
"    return (powf (x, y)) ;                                          \n" \
"}"

inline double GB_pow (double x, double y)
{
    int xr_class = fpclassify (x) ;
    int yr_class = fpclassify (y) ;
    if (xr_class == FP_NAN || yr_class == FP_NAN)
    {
        // z is nan if either x or y are nan
        return (NAN) ;
    }
    if (yr_class == FP_ZERO)
    {
        // z is 1 if y is zero
        return (1) ;
    }
    // otherwise, z = pow (x,y)
    return (pow (x, y)) ;
}

#define GJ_pow_DEFN                                                      \
"double GJ_pow (double x, double y)                                  \n" \
"{                                                                   \n" \
"    #ifndef GB_CUDA_KERNEL                                          \n" \
"    int xr_class = fpclassify (x) ;                                 \n" \
"    int yr_class = fpclassify (y) ;                                 \n" \
"    if (xr_class == FP_NAN || yr_class == FP_NAN)                   \n" \
"    {                                                               \n" \
"        // z is nan if either x or y are nan                        \n" \
"        return (NAN) ;                                              \n" \
"    }                                                               \n" \
"    if (yr_class == FP_ZERO)                                        \n" \
"    {                                                               \n" \
"        // z is 1 if y is zero                                      \n" \
"        return (1) ;                                                \n" \
"    }                                                               \n" \
"    // otherwise, z = pow (x,y)                                     \n" \
"    #endif                                                          \n" \
"    return (pow (x, y)) ;                                           \n" \
"}"

inline GxB_FC32_t GB_FC32_pow (GxB_FC32_t x, GxB_FC32_t y)
{
    float xr = GB_crealf (x) ;
    float yr = GB_crealf (y) ;
    int xr_class = fpclassify (xr) ;
    int yr_class = fpclassify (yr) ;
    int xi_class = fpclassify (GB_cimagf (x)) ;
    int yi_class = fpclassify (GB_cimagf (y)) ;
    if (xi_class == FP_ZERO && yi_class == FP_ZERO)
    {
        // both x and y are real; see if z should be real
        if (xr >= 0 || yr_class == FP_NAN ||
            yr_class == FP_INFINITE || yr == truncf (yr))
        {
            // z is real if x >= 0, or if y is an integer, NaN, or Inf
            return (GB_CMPLX32 (GB_powf (xr, yr), 0)) ;
        }
    }
    if (xr_class == FP_NAN || xi_class == FP_NAN ||
        yr_class == FP_NAN || yi_class == FP_NAN)
    {
        // z is (nan,nan) if any part of x or y are nan
        return (GB_CMPLX32 (NAN, NAN)) ;
    }
    if (yr_class == FP_ZERO && yi_class == FP_ZERO)
    {
        // z is (1,0) if y is (0,0)
        return (GxB_CMPLXF (1, 0)) ;
    }
    return (GB_cpowf (x, y)) ;
}

#define     GJ_FC32_pow_DEFN                                             \
"GxB_FC32_t GJ_FC32_pow (GxB_FC32_t x, GxB_FC32_t y)                 \n" \
"{                                                                   \n" \
"    float xr = GB_crealf (x) ;                                      \n" \
"    float yr = GB_crealf (y) ;                                      \n" \
"    int xr_class = fpclassify (xr) ;                                \n" \
"    int yr_class = fpclassify (yr) ;                                \n" \
"    int xi_class = fpclassify (GB_cimagf (x)) ;                     \n" \
"    int yi_class = fpclassify (GB_cimagf (y)) ;                     \n" \
"    if (xi_class == FP_ZERO && yi_class == FP_ZERO)                 \n" \
"    {                                                               \n" \
"        if (xr >= 0 || yr_class == FP_NAN ||                        \n" \
"            yr_class == FP_INFINITE || yr == truncf (yr))           \n" \
"        {                                                           \n" \
"            return (GJ_CMPLX32 (GJ_powf (xr, yr), 0)) ;             \n" \
"        }                                                           \n" \
"    }                                                               \n" \
"    if (xr_class == FP_NAN || xi_class == FP_NAN ||                 \n" \
"        yr_class == FP_NAN || yi_class == FP_NAN)                   \n" \
"    {                                                               \n" \
"        return (GJ_CMPLX32 (NAN, NAN)) ;                            \n" \
"    }                                                               \n" \
"    if (yr_class == FP_ZERO && yi_class == FP_ZERO)                 \n" \
"    {                                                               \n" \
"        return (GxB_CMPLXF (1, 0)) ;                                \n" \
"    }                                                               \n" \
"    return (GB_cpowf (x, y)) ;                                      \n" \
"}"

inline GxB_FC64_t GB_FC64_pow (GxB_FC64_t x, GxB_FC64_t y)
{
    double xr = GB_creal (x) ;
    double yr = GB_creal (y) ;
    int xr_class = fpclassify (xr) ;
    int yr_class = fpclassify (yr) ;
    int xi_class = fpclassify (GB_cimag (x)) ;
    int yi_class = fpclassify (GB_cimag (y)) ;
    if (xi_class == FP_ZERO && yi_class == FP_ZERO)
    {
        // both x and y are real; see if z should be real
        if (xr >= 0 || yr_class == FP_NAN ||
            yr_class == FP_INFINITE || yr == trunc (yr))
        {
            // z is real if x >= 0, or if y is an integer, NaN, or Inf
            return (GB_CMPLX64 (GB_pow (xr, yr), 0)) ;
        }
    }
    if (xr_class == FP_NAN || xi_class == FP_NAN ||
        yr_class == FP_NAN || yi_class == FP_NAN)
    {
        // z is (nan,nan) if any part of x or y are nan
        return (GB_CMPLX64 (NAN, NAN)) ;
    }
    if (yr_class == FP_ZERO && yi_class == FP_ZERO)
    {
        // z is (1,0) if y is (0,0)
        return (GxB_CMPLX (1, 0)) ;
    }
    return (GB_cpow (x, y)) ;
}

#define     GJ_FC64_pow_DEFN                                             \
"GxB_FC64_t GJ_FC64_pow (GxB_FC64_t x, GxB_FC64_t y)                 \n" \
"{                                                                   \n" \
"    double xr = GB_creal (x) ;                                      \n" \
"    double yr = GB_creal (y) ;                                      \n" \
"    int xr_class = fpclassify (xr) ;                                \n" \
"    int yr_class = fpclassify (yr) ;                                \n" \
"    int xi_class = fpclassify (GB_cimag (x)) ;                      \n" \
"    int yi_class = fpclassify (GB_cimag (y)) ;                      \n" \
"    if (xi_class == FP_ZERO && yi_class == FP_ZERO)                 \n" \
"    {                                                               \n" \
"        if (xr >= 0 || yr_class == FP_NAN ||                        \n" \
"            yr_class == FP_INFINITE || yr == trunc (yr))            \n" \
"        {                                                           \n" \
"            return (GJ_CMPLX64 (GJ_pow (xr, yr), 0)) ;              \n" \
"        }                                                           \n" \
"    }                                                               \n" \
"    if (xr_class == FP_NAN || xi_class == FP_NAN ||                 \n" \
"        yr_class == FP_NAN || yi_class == FP_NAN)                   \n" \
"    {                                                               \n" \
"        return (GJ_CMPLX64 (NAN, NAN)) ;                            \n" \
"    }                                                               \n" \
"    if (yr_class == FP_ZERO && yi_class == FP_ZERO)                 \n" \
"    {                                                               \n" \
"        return (GxB_CMPLX (1, 0)) ;                                 \n" \
"    }                                                               \n" \
"    return (GB_cpow (x, y)) ;                                       \n" \
"}"

inline int8_t GB_pow_int8 (int8_t x, int8_t y)
{
    return (GB_cast_to_int8_t (GB_pow ((double) x, (double) y))) ;
}

#define GJ_pow_int8_DEFN                                                \
"int8_t GJ_pow_int8 (int8_t x, int8_t y)                            \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_int8 (GJ_pow ((double) x, (double) y))) ;   \n" \
"}"

inline int16_t GB_pow_int16 (int16_t x, int16_t y)
{
    return (GB_cast_to_int16_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_int16_DEFN                                              \
"int16_t GJ_pow_int16 (int16_t x, int16_t y)                        \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_int16 (GJ_pow ((double) x, (double) y))) ;  \n" \
"}"

inline int32_t GB_pow_int32 (int32_t x, int32_t y)
{
    return (GB_cast_to_int32_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_int32_DEFN                                              \
"int32_t GJ_pow_int32 (int32_t x, int32_t y)                        \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_int32 (GJ_pow ((double) x, (double) y))) ;  \n" \
"}"

inline int64_t GB_pow_int64 (int64_t x, int64_t y)
{
    return (GB_cast_to_int64_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_int64_DEFN                                              \
"int64_t GJ_pow_int64 (int64_t x, int64_t y)                        \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_int64 (GJ_pow ((double) x, (double) y))) ;  \n" \
"}"

inline uint8_t GB_pow_uint8 (uint8_t x, uint8_t y)
{
    return (GB_cast_to_uint8_t (GB_pow ((double) x, (double) y))) ;
}

#define GJ_pow_uint8_DEFN                                               \
"int8_t GJ_pow_uint8 (int8_t x, int8_t y)                           \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_uint8 (GJ_pow ((double) x, (double) y))) ;  \n" \
"}"

inline uint16_t GB_pow_uint16 (uint16_t x, uint16_t y)
{
    return (GB_cast_to_uint16_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_uint16_DEFN                                             \
"int16_t GJ_pow_uint16 (int16_t x, int16_t y)                       \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_uint16 (GJ_pow ((double) x, (double) y))) ; \n" \
"}"

inline uint32_t GB_pow_uint32 (uint32_t x, uint32_t y)
{
    return (GB_cast_to_uint32_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_uint32_DEFN                                             \
"int32_t GJ_pow_uint32 (int32_t x, int32_t y)                       \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_uint32 (GJ_pow ((double) x, (double) y))) ; \n" \
"}"

inline uint64_t GB_pow_uint64 (uint64_t x, uint64_t y)
{
    return (GB_cast_to_uint64_t (GB_pow ((double) x, (double) y))) ;
}

#define  GJ_pow_uint64_DEFN                                             \
"int64_t GJ_pow_uint64 (int64_t x, int64_t y)                       \n" \
"{                                                                  \n" \
"    return (GJ_cast_to_uint64 (GJ_pow ((double) x, (double) y))) ; \n" \
"}"

//------------------------------------------------------------------------------
// frexp for float and double
//------------------------------------------------------------------------------

inline float GB_frexpxf (float x)
{
    // ignore the exponent and just return the mantissa
    int exp_ignored ;
    return (frexpf (x, &exp_ignored)) ;
}

#define GJ_frexpxf_DEFN                                                 \
 "float GJ_frexpxf (float x)                                        \n" \
"{                                                                  \n" \
"    int exp_ignored ;                                              \n" \
"    return (frexpf (x, &exp_ignored)) ;                            \n" \
"}"

inline float GB_frexpef (float x)
{
    // ignore the mantissa and just return the exponent
    int exp ;
    (void) frexpf (x, &exp) ;
    return ((float) exp) ;
}

#define GJ_frexpef_DEFN                                                 \
 "float GJ_frexpef (float x)                                        \n" \
"{                                                                  \n" \
"    int exp ;                                                      \n" \
"    (void) frexpf (x, &exp) ;                                      \n" \
"    return ((float) exp) ;                                         \n" \
"}"

inline double GB_frexpx (double x)
{
    // ignore the exponent and just return the mantissa
    int exp_ignored ;
    return (frexp (x, &exp_ignored)) ;
}

#define GJ_frexpx_DEFN                                                  \
"double GJ_frexpx (double x)                                        \n" \
"{                                                                  \n" \
"    int exp_ignored ;                                              \n" \
"    return (frexp (x, &exp_ignored)) ;                             \n" \
"}"

inline double GB_frexpe (double x)
{
    // ignore the mantissa and just return the exponent
    int exp ;
    (void) frexp (x, &exp) ;
    return ((double) exp) ;
}

#define GJ_frexpe_DEFN                                                  \
"double GJ_frexpe (double x)                                        \n" \
"{                                                                  \n" \
"    int exp ;                                                      \n" \
"    (void) frexp (x, &exp) ;                                       \n" \
"    return ((double) exp) ;                                        \n" \
"}"

//------------------------------------------------------------------------------
// signum functions
//------------------------------------------------------------------------------

inline float GB_signumf (float x)
{
    if (isnan (x)) return (x) ;
    return ((float) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;
}

#define GJ_signumf_DEFN                                                 \
 "float GJ_signumf (float x)                                        \n" \
"{                                                                  \n" \
"    if (isnan (x)) return (x) ;                                    \n" \
"    return ((float) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;        \n" \
"}"

inline double GB_signum (double x)
{
    if (isnan (x)) return (x) ;
    return ((double) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;
}

#define GJ_signum_DEFN                                                  \
"double GJ_signum (double x)                                        \n" \
"{                                                                  \n" \
"    if (isnan (x)) return (x) ;                                    \n" \
"    return ((double) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;       \n" \
"}"

inline GxB_FC32_t GB_csignumf (GxB_FC32_t x)
{
    if (GB_crealf (x) == 0 && GB_cimagf (x) == 0)
    {
        return (GxB_CMPLXF (0,0)) ;
    }
    float y = GB_cabsf (x) ;
    return (GB_CMPLX32 (GB_crealf (x) / y, GB_cimagf (x) / y)) ;
}

#define     GJ_csignumf_DEFN                                            \
"GxB_FC32_t GJ_csignumf (GxB_FC32_t x)                              \n" \
"{                                                                  \n" \
"    if (GB_crealf (x) == 0 && GB_cimagf (x) == 0)                  \n" \
"    {                                                              \n" \
"        return (GxB_CMPLXF (0,0)) ;                                \n" \
"    }                                                              \n" \
"    float y = GB_cabsf (x) ;                                       \n" \
"    return (GJ_CMPLX32 (GB_crealf (x) / y, GB_cimagf (x) / y)) ;   \n" \
"}"

inline GxB_FC64_t GB_csignum (GxB_FC64_t x)
{
    if (GB_creal (x) == 0 && GB_cimag (x) == 0)
    {
        return (GxB_CMPLX (0,0)) ;
    }
    double y = GB_cabs (x) ;
    return (GB_CMPLX64 (GB_creal (x) / y, GB_cimag (x) / y)) ;
}

#define     GJ_csignum_DEFN                                             \
"GxB_FC64_t GJ_csignum (GxB_FC64_t x)                               \n" \
"{                                                                  \n" \
"    if (GB_creal (x) == 0 && GB_cimag (x) == 0)                    \n" \
"    {                                                              \n" \
"        return (GxB_CMPLX (0,0)) ;                                 \n" \
"    }                                                              \n" \
"    double y = GB_cabs (x) ;                                       \n" \
"    return (GJ_CMPLX64 (GB_creal (x) / y, GB_cimag (x) / y)) ;     \n" \
"}"

//------------------------------------------------------------------------------
// complex functions
//------------------------------------------------------------------------------

// The C11 math.h header defines the ceil, floor, round, trunc,
// exp2, expm1, log10, log1pm, or log2 functions for float and double,
// but the corresponding functions do not appear in the C11 complex.h.
// These functions are used instead, for float complex and double complex.

//------------------------------------------------------------------------------
// z = ceil (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_cceilf (GxB_FC32_t x)
{
    return (GB_CMPLX32 (ceilf (GB_crealf (x)), ceilf (GB_cimagf (x)))) ;
}

#define     GJ_cceilf_DEFN                                                    \
"GxB_FC32_t GJ_cceilf (GxB_FC32_t x)                                      \n" \
"{                                                                        \n" \
"    return (GJ_CMPLX32 (ceilf (GB_crealf (x)), ceilf (GB_cimagf (x)))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = ceil (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_cceil (GxB_FC64_t x)
{
    return (GB_CMPLX64 (ceil (GB_creal (x)), ceil (GB_cimag (x)))) ;
}

#define     GJ_cceil_DEFN                                                   \
"GxB_FC64_t GJ_cceil (GxB_FC64_t x)                                     \n" \
"{                                                                      \n" \
"    return (GJ_CMPLX64 (ceil (GB_creal (x)), ceil (GB_cimag (x)))) ;   \n" \
"}"

//------------------------------------------------------------------------------
// z = floor (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_cfloorf (GxB_FC32_t x)
{
    return (GB_CMPLX32 (floorf (GB_crealf (x)), floorf (GB_cimagf (x)))) ;
}

#define     GJ_cfloorf_DEFN                                                    \
"GxB_FC32_t GJ_cfloorf (GxB_FC32_t x)                                      \n" \
"{                                                                         \n" \
"    return (GJ_CMPLX32 (floorf (GB_crealf (x)), floorf (GB_cimagf (x)))) ;\n" \
"}"

//------------------------------------------------------------------------------
// z = floor (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_cfloor (GxB_FC64_t x)
{
    return (GB_CMPLX64 (floor (GB_creal (x)), floor (GB_cimag (x)))) ;
}

#define     GJ_cfloor_DEFN                                                  \
"GxB_FC64_t GJ_cfloor (GxB_FC64_t x)                                    \n" \
"{                                                                      \n" \
"    return (GJ_CMPLX64 (floor (GB_creal (x)), floor (GB_cimag (x)))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = round (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_croundf (GxB_FC32_t x)
{
    return (GB_CMPLX32 (roundf (GB_crealf (x)), roundf (GB_cimagf (x)))) ;
}

#define     GJ_croundf_DEFN                                                    \
"GxB_FC32_t GJ_croundf (GxB_FC32_t x)                                      \n" \
"{                                                                         \n" \
"    return (GJ_CMPLX32 (roundf (GB_crealf (x)), roundf (GB_cimagf (x)))) ;\n" \
"}"

//------------------------------------------------------------------------------
// z = round (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_cround (GxB_FC64_t x)
{
    return (GB_CMPLX64 (round (GB_creal (x)), round (GB_cimag (x)))) ;
}

#define     GJ_cround_DEFN                                                  \
"GxB_FC64_t GJ_cround (GxB_FC64_t x)                                    \n" \
"{                                                                      \n" \
"    return (GJ_CMPLX64 (round (GB_creal (x)), round (GB_cimag (x)))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = trunc (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_ctruncf (GxB_FC32_t x)
{
    return (GB_CMPLX32 (truncf (GB_crealf (x)), truncf (GB_cimagf (x)))) ;
}

#define     GJ_ctruncf_DEFN                                                    \
"GxB_FC32_t GJ_ctruncf (GxB_FC32_t x)                                      \n" \
"{                                                                         \n" \
"    return (GJ_CMPLX32 (truncf (GB_crealf (x)), truncf (GB_cimagf (x)))) ;\n" \
"}"

//------------------------------------------------------------------------------
// z = trunc (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_ctrunc (GxB_FC64_t x)
{
    return (GB_CMPLX64 (trunc (GB_creal (x)), trunc (GB_cimag (x)))) ;
}

#define     GJ_ctrunc_DEFN                                                  \
"GxB_FC64_t GJ_ctrunc (GxB_FC64_t x)                                    \n" \
"{                                                                      \n" \
"    return (GJ_CMPLX64 (trunc (GB_creal (x)), trunc (GB_cimag (x)))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = exp2 (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_cexp2f (GxB_FC32_t x)
{
    if (fpclassify (GB_cimagf (x)) == FP_ZERO)
    {
        // x is real, use exp2f
        return (GB_CMPLX32 (exp2f (GB_crealf (x)), 0)) ;
    }
    return (GB_FC32_pow (GxB_CMPLXF (2,0), x)) ;     // z = 2^x
}

#define     GJ_cexp2f_DEFN                                              \
"GxB_FC32_t GJ_cexp2f (GxB_FC32_t x)                                \n" \
"{                                                                  \n" \
"    if (fpclassify (GB_cimagf (x)) == FP_ZERO)                     \n" \
"    {                                                              \n" \
"        return (GJ_CMPLX32 (exp2f (GB_crealf (x)), 0)) ;           \n" \
"    }                                                              \n" \
"    return (GJ_FC32_pow (GxB_CMPLXF (2,0), x)) ;                   \n" \
"}"

//------------------------------------------------------------------------------
// z = exp2 (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_cexp2 (GxB_FC64_t x)
{
    if (fpclassify (GB_cimag (x)) == FP_ZERO)
    {
        // x is real, use exp2
        return (GB_CMPLX64 (exp2 (GB_creal (x)), 0)) ;
    }
    return (GB_FC64_pow (GxB_CMPLX (2,0), x)) ;      // z = 2^x
}

#define     GJ_cexp2_DEFN                                               \
"GxB_FC64_t GJ_cexp2 (GxB_FC64_t x)                                 \n" \
"{                                                                  \n" \
"    if (fpclassify (GB_cimag (x)) == FP_ZERO)                      \n" \
"    {                                                              \n" \
"        return (GJ_CMPLX64 (exp2 (GB_creal (x)), 0)) ;             \n" \
"    }                                                              \n" \
"    return (GJ_FC64_pow (GxB_CMPLX (2,0), x)) ;                    \n" \
"}"

//------------------------------------------------------------------------------
// z = expm1 (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_cexpm1 (GxB_FC64_t x)
{
    // FUTURE: GB_cexpm1 is not accurate
    // z = cexp (x) - 1
    GxB_FC64_t z = GB_cexp (x) ;
    return (GB_CMPLX64 (GB_creal (z) - 1, GB_cimag (z))) ;
}

#define     GJ_cexpm1_DEFN                                              \
"GxB_FC64_t GJ_cexpm1 (GxB_FC64_t x)                                \n" \
"{                                                                  \n" \
"    GxB_FC64_t z = GB_cexp (x) ;                                   \n" \
"    return (GJ_CMPLX64 (GB_creal (z) - 1, GB_cimag (z))) ;         \n" \
"}"

//------------------------------------------------------------------------------
// z = expm1 (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_cexpm1f (GxB_FC32_t x)
{
    // typecast to double and use GB_cexpm1
    GxB_FC64_t z = GB_CMPLX64 ((double) GB_crealf (x),
                               (double) GB_cimagf (x)) ;
    z = GB_cexpm1 (z) ;
    return (GB_CMPLX32 ((float) GB_creal (z),
                        (float) GB_cimag (z))) ;
}

#define     GJ_cexpm1f_DEFN                                             \
"GxB_FC32_t GJ_cexpm1f (GxB_FC32_t x)                               \n" \
"{                                                                  \n" \
"    GxB_FC64_t z = GJ_CMPLX64 ((double) GB_crealf (x),             \n" \
"                               (double) GB_cimagf (x)) ;           \n" \
"    z = GJ_cexpm1 (z) ;                                            \n" \
"    return (GJ_CMPLX32 ((float) GB_creal (z),                      \n" \
"                        (float) GB_cimag (z))) ;                   \n" \
"}"

//------------------------------------------------------------------------------
// z = log1p (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_clog1p (GxB_FC64_t x)
{
    // FUTURE: GB_clog1p is not accurate
    // z = clog (1+x)
    return (GB_clog (GB_CMPLX64 (GB_creal (x) + 1, GB_cimag (x)))) ;
}

#define     GJ_clog1p_DEFN                                                  \
"GxB_FC64_t GJ_clog1p (GxB_FC64_t x)                                    \n" \
"{                                                                      \n" \
"    return (GB_clog (GJ_CMPLX64 (GB_creal (x) + 1, GB_cimag (x)))) ;   \n" \
"}"

//------------------------------------------------------------------------------
// z = log1p (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_clog1pf (GxB_FC32_t x)
{
    // typecast to double and use GB_clog1p
    GxB_FC64_t z = GB_CMPLX64 ((double) GB_crealf (x),
                               (double) GB_cimagf (x)) ;
    z = GB_clog1p (z) ;
    return (GB_CMPLX32 ((float) GB_creal (z),
                        (float) GB_cimag (z))) ;
}

#define     GJ_clog1pf_DEFN                                             \
"GxB_FC32_t GJ_clog1pf (GxB_FC32_t x)                               \n" \
"{                                                                  \n" \
"    GxB_FC64_t z = GJ_CMPLX64 ((double) GB_crealf (x),             \n" \
"                               (double) GB_cimagf (x)) ;           \n" \
"    z = GJ_clog1p (z) ;                                            \n" \
"    return (GJ_CMPLX32 ((float) GB_creal (z),                      \n" \
"                        (float) GB_cimag (z))) ;                   \n" \
"}"

//------------------------------------------------------------------------------
// z = log10 (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_clog10f (GxB_FC32_t x)
{
    // z = log (x) / log (10)
    return (GB_FC32_div (GB_clogf (x), GxB_CMPLXF (2.3025851f, 0))) ;
}

#define     GJ_clog10f_DEFN                                                 \
"GxB_FC32_t GJ_clog10f (GxB_FC32_t x)                                   \n" \
"{                                                                      \n" \
"    return (GJ_FC32_div (GB_clogf (x), GxB_CMPLXF (2.3025851f, 0))) ;  \n" \
"}"

//------------------------------------------------------------------------------
// z = log10 (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_clog10 (GxB_FC64_t x)
{
    // z = log (x) / log (10)
    return (GB_FC64_div (GB_clog (x),
        GxB_CMPLX (2.302585092994045901, 0))) ;
}

#define     GJ_clog10_DEFN                                              \
"GxB_FC64_t GJ_clog10 (GxB_FC64_t x)                                \n" \
"{                                                                  \n" \
"    return (GJ_FC64_div (GB_clog (x),                              \n" \
"        GxB_CMPLX (2.302585092994045901, 0))) ;                    \n" \
"}"

//------------------------------------------------------------------------------
// z = log2 (x) for float complex
//------------------------------------------------------------------------------

inline GxB_FC32_t GB_clog2f (GxB_FC32_t x)
{
    // z = log (x) / log (2)
    return (GB_FC32_div (GB_clogf (x), GxB_CMPLXF (0.69314718f, 0))) ;
}

#define     GJ_clog2f_DEFN                                                  \
"GxB_FC32_t GJ_clog2f (GxB_FC32_t x)                                    \n" \
"{                                                                      \n" \
"    return (GJ_FC32_div (GB_clogf (x), GxB_CMPLXF (0.69314718f, 0))) ; \n" \
"}"

//------------------------------------------------------------------------------
// z = log2 (x) for double complex
//------------------------------------------------------------------------------

inline GxB_FC64_t GB_clog2 (GxB_FC64_t x)
{
    // z = log (x) / log (2)
    return (GB_FC64_div (GB_clog (x),
        GxB_CMPLX (0.693147180559945286, 0))) ;
}

#define     GJ_clog2_DEFN                                               \
"GxB_FC64_t GJ_clog2 (GxB_FC64_t x)                                 \n" \
"{                                                                  \n" \
"    return (GJ_FC64_div (GB_clog (x),                              \n" \
"        GxB_CMPLX (0.693147180559945286, 0))) ;                    \n" \
"}"

//------------------------------------------------------------------------------
// z = isinf (x) for float complex
//------------------------------------------------------------------------------

inline bool GB_cisinff (GxB_FC32_t x)
{
    return (isinf (GB_crealf (x)) || isinf (GB_cimagf (x))) ;
}

#define GJ_cisinff_DEFN                                                 \
  "bool GJ_cisinff (GxB_FC32_t x)                                   \n" \
"{                                                                  \n" \
"    return (isinf (GB_crealf (x)) || isinf (GB_cimagf (x))) ;      \n" \
"}"

//------------------------------------------------------------------------------
// z = isinf (x) for double complex
//------------------------------------------------------------------------------

inline bool GB_cisinf (GxB_FC64_t x)
{
    return (isinf (GB_creal (x)) || isinf (GB_cimag (x))) ;
}

#define GJ_cisinf_DEFN                                                  \
  "bool GJ_cisinf (GxB_FC64_t x)                                    \n" \
"{                                                                  \n" \
"    return (isinf (GB_creal (x)) || isinf (GB_cimag (x))) ;        \n" \
"}"

//------------------------------------------------------------------------------
// z = isnan (x) for float complex
//------------------------------------------------------------------------------

inline bool GB_cisnanf (GxB_FC32_t x)
{
    return (isnan (GB_crealf (x)) || isnan (GB_cimagf (x))) ;
}

#define GJ_cisnanf_DEFN                                                 \
  "bool GJ_cisnanf (GxB_FC32_t x)                                   \n" \
"{                                                                  \n" \
"    return (isnan (GB_crealf (x)) || isnan (GB_cimagf (x))) ;      \n" \
"}"

//------------------------------------------------------------------------------
// z = isnan (x) for double complex
//------------------------------------------------------------------------------

inline bool GB_cisnan (GxB_FC64_t x)
{
    return (isnan (GB_creal (x)) || isnan (GB_cimag (x))) ;
}

#define GJ_cisnan_DEFN                                                  \
  "bool GJ_cisnan (GxB_FC64_t x)                                    \n" \
"{                                                                  \n" \
"    return (isnan (GB_creal (x)) || isnan (GB_cimag (x))) ;        \n" \
"}"

//------------------------------------------------------------------------------
// z = isfinite (x) for float complex
//------------------------------------------------------------------------------

inline bool GB_cisfinitef (GxB_FC32_t x)
{
    return (isfinite (GB_crealf (x)) && isfinite (GB_cimagf (x))) ;
}

#define GJ_cisfinitef_DEFN                                              \
  "bool GJ_cisfinitef (GxB_FC32_t x)                                \n" \
"{                                                                  \n" \
"    return (isfinite (GB_crealf (x)) && isfinite (GB_cimagf (x))) ;\n" \
"}"

//------------------------------------------------------------------------------
// z = isfinite (x) for double complex
//------------------------------------------------------------------------------

inline bool GB_cisfinite (GxB_FC64_t x)
{
    return (isfinite (GB_creal (x)) && isfinite (GB_cimag (x))) ;
}

#define GJ_cisfinite_DEFN                                               \
  "bool GJ_cisfinite (GxB_FC64_t x)                                 \n" \
"{                                                                  \n" \
"    return (isfinite (GB_creal (x)) && isfinite (GB_cimag (x))) ;  \n" \
"}"

#endif