File: GB_complex.h

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (278 lines) | stat: -rw-r--r-- 10,729 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//------------------------------------------------------------------------------
// GB_complex.h: definitions for complex types
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// These macros allow GraphBLAS to be compiled with a C++ compiler. See:
// https://www.drdobbs.com/complex-arithmetic-in-the-intersection-o/184401628#

#ifndef GB_COMPLEX_H
#define GB_COMPLEX_H

//------------------------------------------------------------------------------
// complex constructors
//------------------------------------------------------------------------------

#if GB_HAS_CMPLX_MACROS

    //--------------------------------------------------------------------------
    // typical case
    //--------------------------------------------------------------------------

    // The GxB_CMPLX* macros defined in GraphBLAS.h do no flops so they are
    // safe to use if the inputs are Inf or NaN.  The CUDA kernels use these
    // methods.

    #define GJ_CMPLX32(xreal,ximag) GxB_CMPLXF (xreal, ximag)
    #define GJ_CMPLX64(xreal,ximag) GxB_CMPLX  (xreal, ximag)

    #define GB_CMPLX32(xreal,ximag) GxB_CMPLXF (xreal, ximag)
    #define GB_CMPLX64(xreal,ximag) GxB_CMPLX  (xreal, ximag)

#else

    //--------------------------------------------------------------------------
    // Mac only, or other compilers that do not #define CMPLX and CMPLXF
    //--------------------------------------------------------------------------

    // gcc on the Mac does not define the CMPLX and CMPLXF macros.  The macros
    // defined in GraphBLAS.h do arithmetic, so they are not safe with Inf or
    // NaN.

    //--------------------------------------------------------------------------
    // GJ_* macros and methods for kernels (JIT or Factory)
    //--------------------------------------------------------------------------

    // These methods are 'static inline' because they are meant to be used
    // directly inside JIT, or Factory Kernels.

    #define GJ_CMPLX32(xreal,ximag) GJ_complexf (xreal, ximag)
    #define GJ_CMPLX64(xreal,ximag) GJ_complex  (xreal, ximag)

    static inline GxB_FC32_t GJ_complexf (float xreal, float ximag)
    {
        float z [2] ;
        z [0] = xreal ;
        z [1] = ximag ;
        return (* ((GxB_FC32_t *) z)) ;
    }

    static inline GxB_FC64_t GJ_complex (double xreal, double ximag)
    {
        double z [2] ;
        z [0] = xreal ;
        z [1] = ximag ;
        return (* ((GxB_FC64_t *) z)) ;
    }

    //--------------------------------------------------------------------------
    // GB_* macros and methods for the generic case
    //--------------------------------------------------------------------------

    // These methods are not 'static inline' because they are used inside other
    // 'inline' methods.

    #define GB_CMPLX32(xreal,ximag) GB_complexf (xreal, ximag)
    #define GB_CMPLX64(xreal,ximag) GB_complex  (xreal, ximag)

    inline GxB_FC32_t GB_complexf (float xreal, float ximag)
    {
        float z [2] ;
        z [0] = xreal ;
        z [1] = ximag ;
        return (* ((GxB_FC32_t *) z)) ;
    }

    inline GxB_FC64_t GB_complex (double xreal, double ximag)
    {
        double z [2] ;
        z [0] = xreal ;
        z [1] = ximag ;
        return (* ((GxB_FC64_t *) z)) ;
    }

#endif

//------------------------------------------------------------------------------
// macros for complex built-in functions
//------------------------------------------------------------------------------

#if defined ( __cplusplus ) || defined ( __NVCC__ )

    //--------------------------------------------------------------------------
    // ANSI C++ or NVCC
    //--------------------------------------------------------------------------

    #define GB_crealf(x)   std::real(x)
    #define GB_creal(x)    std::real(x)
    #define GB_cimagf(x)   std::imag(x)
    #define GB_cimag(x)    std::imag(x)
    #define GB_cpowf(x,y)  std::pow(x,y)
    #define GB_cpow(x,y)   std::pow(x,y)
    #define GB_cexpf(x)    std::exp(x)
    #define GB_cexp(x)     std::exp(x)
    #define GB_clogf(x)    std::log(x)
    #define GB_clog(x)     std::log(x)
    #define GB_cabsf(x)    std::abs(x)
    #define GB_cabs(x)     std::abs(x)
    #define GB_csqrtf(x)   std::sqrt(x)
    #define GB_csqrt(x)    std::sqrt(x)
    #define GB_conjf(x)    std::conj(x)
    #define GB_conj(x)     std::conj(x)
    #define GB_cargf(x)    std::arg(x)
    #define GB_carg(x)     std::arg(x)
    #define GB_csinf(x)    std::sin(x)
    #define GB_csin(x)     std::sin(x)
    #define GB_ccosf(x)    std::cos(x)
    #define GB_ccos(x)     std::cos(x)
    #define GB_ctanf(x)    std::tan(x)
    #define GB_ctan(x)     std::tan(x)
    #define GB_casinf(x)   std::asin(x)
    #define GB_casin(x)    std::asin(x)
    #define GB_cacosf(x)   std::acos(x)
    #define GB_cacos(x)    std::acos(x)
    #define GB_catanf(x)   std::atan(x)
    #define GB_catan(x)    std::atan(x)
    #define GB_csinhf(x)   std::sinh(x)
    #define GB_csinh(x)    std::sinh(x)
    #define GB_ccoshf(x)   std::cosh(x)
    #define GB_ccosh(x)    std::cosh(x)
    #define GB_ctanhf(x)   std::tanh(x)
    #define GB_ctanh(x)    std::tanh(x)
    #define GB_casinhf(x)  std::asinh(x)
    #define GB_casinh(x)   std::asinh(x)
    #define GB_cacoshf(x)  std::acosh(x)
    #define GB_cacosh(x)   std::acosh(x)
    #define GB_catanhf(x)  std::atanh(x)
    #define GB_catanh(x)   std::atanh(x)

#else

    //--------------------------------------------------------------------------
    // C11
    //--------------------------------------------------------------------------

    #define GB_crealf(x)   crealf(x)
    #define GB_creal(x)    creal(x)
    #define GB_cimagf(x)   cimagf(x)
    #define GB_cimag(x)    cimag(x)
    #define GB_cpowf(x,y)  cpowf(x,y)
    #define GB_cpow(x,y)   cpow(x,y)
    #define GB_cexpf(x)    cexpf(x)
    #define GB_cexp(x)     cexp(x)
    #define GB_clogf(x)    clogf(x)
    #define GB_clog(x)     clog(x)
    #define GB_cabsf(x)    cabsf(x)
    #define GB_cabs(x)     cabs(x)
    #define GB_csqrtf(x)   csqrtf(x)
    #define GB_csqrt(x)    csqrt(x)
    #define GB_conjf(x)    conjf(x)
    #define GB_conj(x)     conj(x)
    #define GB_cargf(x)    cargf(x)
    #define GB_carg(x)     carg(x)
    #define GB_csinf(x)    csinf(x)
    #define GB_csin(x)     csin(x)
    #define GB_ccosf(x)    ccosf(x)
    #define GB_ccos(x)     ccos(x)
    #define GB_ctanf(x)    ctanf(x)
    #define GB_ctan(x)     ctan(x)
    #define GB_casinf(x)   casinf(x)
    #define GB_casin(x)    casin(x)
    #define GB_cacosf(x)   cacosf(x)
    #define GB_cacos(x)    cacos(x)
    #define GB_catanf(x)   catanf(x)
    #define GB_catan(x)    catan(x)
    #define GB_csinhf(x)   csinhf(x)
    #define GB_csinh(x)    csinh(x)
    #define GB_ccoshf(x)   ccoshf(x)
    #define GB_ccosh(x)    ccosh(x)
    #define GB_ctanhf(x)   ctanhf(x)
    #define GB_ctanh(x)    ctanh(x)
    #define GB_casinhf(x)  casinhf(x)
    #define GB_casinh(x)   casinh(x)
    #define GB_cacoshf(x)  cacoshf(x)
    #define GB_cacosh(x)   cacosh(x)
    #define GB_catanhf(x)  catanhf(x)
    #define GB_catanh(x)   catanh(x)

#endif

//------------------------------------------------------------------------------
// macros for basic complex operations: mult, add, minus, ainv
//------------------------------------------------------------------------------

#if defined (GxB_HAVE_COMPLEX_MSVC)

    //--------------------------------------------------------------------------
    // Microsoft Visual Studio compiler with its own complex type
    //--------------------------------------------------------------------------

    // complex-complex multiply: z = x*y where both x and y are complex
    #define GB_FC32_mul(x,y) (_FCmulcc (x, y))
    #define GB_FC64_mul(x,y) ( _Cmulcc (x, y))

    // complex-complex addition: z = x+y where both x and y are complex
    #define GB_FC32_add(x,y) GxB_CMPLXF (GB_crealf (x) + GB_crealf (y), GB_cimagf (x) + GB_cimagf (y))
    #define GB_FC64_add(x,y) GxB_CMPLX  (GB_creal  (x) + GB_creal  (y), GB_cimag  (x) + GB_cimag  (y))

    // complex-complex subtraction: z = x-y where both x and y are complex
    #define GB_FC32_minus(x,y) GxB_CMPLXF (GB_crealf (x) - GB_crealf (y), GB_cimagf (x) - GB_cimagf (y))
    #define GB_FC64_minus(x,y) GxB_CMPLX  (GB_creal  (x) - GB_creal  (y), GB_cimag  (x) - GB_cimag  (y))

    // complex negation: z = -x
    #define GB_FC32_ainv(x) GxB_CMPLXF (-GB_crealf (x), -GB_cimagf (x))
    #define GB_FC64_ainv(x) GxB_CMPLX  (-GB_creal  (x), -GB_cimag  (x))

#else

    //--------------------------------------------------------------------------
    // native complex type support
    //--------------------------------------------------------------------------

    // complex-complex multiply: z = x*y where both x and y are complex
    #define GB_FC32_mul(x,y) ((x) * (y))
    #define GB_FC64_mul(x,y) ((x) * (y))

    // complex-complex addition: z = x+y where both x and y are complex
    #define GB_FC32_add(x,y) ((x) + (y))
    #define GB_FC64_add(x,y) ((x) + (y))

    // complex-complex subtraction: z = x-y where both x and y are complex
    #define GB_FC32_minus(x,y) ((x) - (y))
    #define GB_FC64_minus(x,y) ((x) - (y))

    // complex negation
    #define GB_FC32_ainv(x) (-(x))
    #define GB_FC64_ainv(x) (-(x))

#endif

//------------------------------------------------------------------------------
// complex comparators
//------------------------------------------------------------------------------

#define GB_FC32_eq(x,y) ((GB_crealf(x) == GB_crealf(y)) && (GB_cimagf(x) == GB_cimagf(y)))
#define GB_FC64_eq(x,y) ((GB_creal (x) == GB_creal (y)) && (GB_cimag (x) == GB_cimag (y)))

#define GB_FC32_ne(x,y) ((GB_crealf(x) != GB_crealf(y)) || (GB_cimagf(x) != GB_cimagf(y)))
#define GB_FC64_ne(x,y) ((GB_creal (x) != GB_creal (y)) || (GB_cimag (x) != GB_cimag (y)))

// safe to use GxB_CMPLX* here because the eq and ne operators return boolean
#define GB_FC32_iseq(x,y) GxB_CMPLXF ((float)  GB_FC32_eq (x,y), 0)
#define GB_FC64_iseq(x,y) GxB_CMPLX  ((double) GB_FC64_eq (x,y), 0)

#define GB_FC32_isne(x,y) GxB_CMPLXF ((float)  GB_FC32_ne (x,y), 0)
#define GB_FC64_isne(x,y) GxB_CMPLX  ((double) GB_FC64_ne (x,y), 0)

#define GB_FC32_eq0(x) ((GB_crealf (x) == 0) && (GB_cimagf (x) == 0))
#define GB_FC64_eq0(x) ((GB_creal  (x) == 0) && (GB_cimag  (x) == 0))

#define GB_FC32_ne0(x) ((GB_crealf (x) != 0) || (GB_cimagf (x) != 0))
#define GB_FC64_ne0(x) ((GB_creal  (x) != 0) || (GB_cimag  (x) != 0))

#endif