1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
//------------------------------------------------------------------------------
// GB_AxB_dot4: compute C+=A'*B in-place
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_dot4 does its computation in a single phase, computing its result in
// the input matrix C, which is already as-if-full (in any format). The mask M
// is not handled by this function. C is not iso on output, but might be iso
// on input (if so, C is converted from iso on input to non-iso on output).
// The accum operator is the same as monoid operator semiring->add->op, and the
// type of C (C->type) matches the accum->ztype so no typecasting is needed
// from the monoid ztype to C.
// The ANY monoid is a special case: C is not modified at all.
//------------------------------------------------------------------------------
#include "mxm/GB_mxm.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (B_slice, int64_t) ; \
GB_WERK_POP (A_slice, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
//------------------------------------------------------------------------------
// GB_AxB_dot4: compute C+=A'*B in-place
//------------------------------------------------------------------------------
GrB_Info GB_AxB_dot4 // C+=A'*B, dot product method
(
GrB_Matrix C, // input/output matrix, must be as-if-full
const GrB_Matrix A, // input matrix
const GrB_Matrix B, // input matrix
const GrB_Semiring semiring, // semiring that defines C+=A*B and accum
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
bool *done_in_place, // if true, dot4 has computed the result
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT_MATRIX_OK (C, "C for dot in-place += A'*B", GB0) ;
ASSERT_MATRIX_OK (A, "A for dot in-place += A'*B", GB0) ;
ASSERT_MATRIX_OK (B, "B for dot in-place += A'*B", GB0) ;
ASSERT (GB_IS_FULL (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for in-place += A'*B", GB0) ;
ASSERT (A->vlen == B->vlen) ;
GB_WERK_DECLARE (A_slice, int64_t) ;
GB_WERK_DECLARE (B_slice, int64_t) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
ASSERT (mult->ztype == semiring->add->op->ztype) ;
ASSERT (C->type == semiring->add->op->ztype) ;
bool op_is_first = mult->opcode == GB_FIRST_binop_code ;
bool op_is_second = mult->opcode == GB_SECOND_binop_code ;
bool op_is_pair = mult->opcode == GB_PAIR_binop_code ;
bool A_is_pattern = false ;
bool B_is_pattern = false ;
if (flipxy)
{
// z = fmult (b,a) will be computed
A_is_pattern = op_is_first || op_is_pair ;
B_is_pattern = op_is_second || op_is_pair ;
ASSERT (GB_IMPLIES (!A_is_pattern,
GB_Type_compatible (A->type, mult->ytype))) ;
ASSERT (GB_IMPLIES (!B_is_pattern,
GB_Type_compatible (B->type, mult->xtype))) ;
}
else
{
// z = fmult (a,b) will be computed
A_is_pattern = op_is_second || op_is_pair ;
B_is_pattern = op_is_first || op_is_pair ;
ASSERT (GB_IMPLIES (!A_is_pattern,
GB_Type_compatible (A->type, mult->xtype))) ;
ASSERT (GB_IMPLIES (!B_is_pattern,
GB_Type_compatible (B->type, mult->ytype))) ;
}
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
&xcode, &ycode, &zcode) ;
if (add_binop_code == GB_ANY_binop_code)
{
// no work to do
// future:: when the JIT is extended to handle the case when
// accum != monoid->op, this case must be modified.
return (GrB_NO_VALUE) ;
}
GBURBLE ("(dot4: %s += %s'*%s) ",
GB_sparsity_char_matrix (C),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int64_t anz = GB_nnz_held (A) ;
int64_t bnz = GB_nnz_held (B) ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (anz + bnz, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// slice A and B
//--------------------------------------------------------------------------
// A and B can have any sparsity: sparse/hyper/bitmap/full.
// C is always as-if-full.
int64_t anvec = A->nvec ;
int64_t bnvec = B->nvec ;
int naslice, nbslice ;
if (nthreads == 1)
{
naslice = 1 ;
nbslice = 1 ;
}
else
{
bool A_is_sparse_or_hyper = GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A) ;
bool B_is_sparse_or_hyper = GB_IS_SPARSE (B) || GB_IS_HYPERSPARSE (B) ;
if (A_is_sparse_or_hyper && B_is_sparse_or_hyper)
{
// both A and B are sparse/hyper; split them finely
naslice = 16 * nthreads ;
nbslice = 16 * nthreads ;
}
else if (!A_is_sparse_or_hyper && B_is_sparse_or_hyper)
{
// A is bitmap/full and B is sparse/hyper; only split B
naslice = 1 ;
nbslice = 16 * nthreads ;
}
else if (A_is_sparse_or_hyper && !B_is_sparse_or_hyper)
{
// A is sparse/hyper and B is bitmap/full; is only split A
naslice = 16 * nthreads ;
nbslice = 1 ;
}
else
{
// A and B are bitmap/full; split them coarsely
naslice = nthreads ;
nbslice = nthreads ;
}
}
// ensure each slice has at least one vector
naslice = GB_IMIN (naslice, anvec) ;
nbslice = GB_IMIN (nbslice, bnvec) ;
GB_WERK_PUSH (A_slice, naslice + 1, int64_t) ;
GB_WERK_PUSH (B_slice, nbslice + 1, int64_t) ;
if (A_slice == NULL || B_slice == NULL)
{
// out of memory
GB_FREE_WORKSPACE ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_p_slice (A_slice, A->p, A->p_is_32, anvec, naslice, false) ;
GB_p_slice (B_slice, B->p, B->p_is_32, bnvec, nbslice, false) ;
//--------------------------------------------------------------------------
// convert C to non-iso
//--------------------------------------------------------------------------
bool C_in_iso = C->iso ;
bool initialized = GB_IS_HYPERSPARSE (A) || GB_IS_HYPERSPARSE (B) ;
if (C_in_iso)
{
// allocate but do not initialize C->x unless A or B are hypersparse.
// The initialization must be done if dot4 doesn't do the work; see
// below for the check for (info == GrB_NO_VALUE).
GB_OK (GB_convert_any_to_non_iso (C, initialized)) ;
}
//--------------------------------------------------------------------------
// via the factory kernel
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//----------------------------------------------------------------------
// define the worker for the switch factory
//----------------------------------------------------------------------
#define GB_Adot4B(add,mult,xname) GB (_Adot4B_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_Adot4B (add,mult,xname) (C, C_in_iso, A, B, \
A_slice, B_slice, naslice, nbslice, nthreads, Werk) ; \
} \
break ;
//----------------------------------------------------------------------
// launch the switch factory
//----------------------------------------------------------------------
// disabled the ANY monoid
#define GB_NO_ANY_MONOID
if (builtin_semiring)
{
#include "mxm/factory/GB_AxB_factory.c"
}
}
#endif
//--------------------------------------------------------------------------
// via the JIT or PreJIT kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
// C+= A*B, C is full
info = GB_AxB_dot4_jit (C, C_in_iso, A, B, semiring,
flipxy, A_slice, B_slice, naslice, nbslice, nthreads, Werk) ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
if (info == GrB_NO_VALUE)
{
// dot4 doesn't handle this case; punt to dot2 or dot3
if (C_in_iso && !initialized)
{
// C has been expanded to non-iso, but dot4 didn't do the work,
// and C has been left incompletely expanded to non-iso.
// Need to copy the iso value in Cx [0] to all of Cx.
size_t csize = C->type->size ;
GB_void cscalar [GB_VLA(csize)] ;
int64_t cnz = GB_nnz_held (C) ;
memcpy (cscalar, C->x, csize) ;
GB_OK (GB_iso_expand (C->x, cnz, cscalar, C->type)) ;
info = GrB_NO_VALUE ;
}
GBURBLE ("(punt) ") ;
}
else if (info == GrB_SUCCESS)
{
ASSERT_MATRIX_OK (C, "dot4: output", GB0) ;
(*done_in_place) = true ;
}
else
{
// out of memory, or other error
GB_FREE_ALL ;
}
return (info) ;
}
|