1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
//------------------------------------------------------------------------------
// GB_AxB_saxbit: compute C=A*B, C<M>=A*B, or C<!M>=A*B; C bitmap
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#define GB_FREE_WORKSPACE \
{ \
GB_FREE_MEMORY (&Wf, Wf_size) ; \
GB_FREE_MEMORY (&Wcx, Wcx_size) ; \
GB_WERK_POP (H_slice, int64_t) ; \
GB_WERK_POP (A_slice, int64_t) ; \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
#include "mxm/GB_mxm.h"
#include "jitifyer/GB_stringify.h"
#include "mxm/GB_AxB_saxpy.h"
#include "binaryop/GB_binop.h"
#include "mxm/GB_AxB_saxpy_generic.h"
#include "mxm/GB_AxB__include1.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif
//------------------------------------------------------------------------------
// GB_AxB_saxbit: compute C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------------------
// TODO: also pass in the user's C and the accum operator, and done_in_place,
// like GB_AxB_dot4.
GrB_Info GB_AxB_saxbit // C = A*B where C is bitmap
(
GrB_Matrix C, // output matrix, static header
const bool C_iso, // true if C is iso
const GB_void *cscalar, // iso value of C
const GrB_Matrix M, // optional mask matrix
const bool Mask_comp, // if true, use !M
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for bitmap saxpy A*B", GB0) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT_MATRIX_OK (A, "A for bitmap saxpy A*B", GB0) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT_MATRIX_OK (B, "B for bitmap saxpy A*B", GB0) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (GB_JUMBLED_OK (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for bitmap saxpy A*B", GB0) ;
ASSERT (A->vdim == B->vlen) ;
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
int8_t *restrict Wf = NULL ; size_t Wf_size = 0 ;
GB_void *restrict Wcx = NULL ; size_t Wcx_size = 0 ;
GB_WERK_DECLARE (H_slice, int64_t) ;
GB_WERK_DECLARE (A_slice, int64_t) ;
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
int M_nthreads = 0 ;
int M_ntasks = 0 ;
int nthreads = 0 ;
int ntasks = 0 ;
int nfine_tasks_per_vector = 0 ;
bool use_coarse_tasks = false ;
bool use_atomics = false ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
//--------------------------------------------------------------------------
// construct C
//--------------------------------------------------------------------------
// TODO: If C is the right type on input, and accum is the same as the
// monoid, then do not create C, but compute in-place instead.
// Cb is set to all zero. C->x is malloc'd unless C is iso, in which case
// it is calloc'ed.
GrB_Type ctype = semiring->add->op->ztype ;
int64_t cnzmax = 1 ;
(void) GB_int64_multiply ((uint64_t *) (&cnzmax), A->vlen, B->vdim) ;
GB_OK (GB_new_bix (&C, // existing header
ctype, A->vlen, B->vdim, GB_ph_null, true, GxB_BITMAP, true,
GB_HYPER_SWITCH_DEFAULT, -1, cnzmax, true, C_iso,
/* OK: */ false, false, false)) ;
C->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
ASSERT (mult->ztype == semiring->add->op->ztype) ;
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;
//--------------------------------------------------------------------------
// slice the M matrix
//--------------------------------------------------------------------------
if (M != NULL)
{
GB_SLICE_MATRIX2 (M, 8) ;
}
//--------------------------------------------------------------------------
// slice the A matrix (if sparse or hyper) and construct the tasks
//--------------------------------------------------------------------------
if (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A))
{
//----------------------------------------------------------------------
// slice A if it is sparse or hypersparse
//----------------------------------------------------------------------
GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
&use_coarse_tasks, &use_atomics, GB_nnz_held (A), GB_nnz_held (B),
B->vdim, C->vlen) ;
if (!use_coarse_tasks)
{
// slice the matrix A for each team of fine tasks
GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
if (A_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_p_slice (A_slice, A->p, A->p_is_32, A->nvec,
nfine_tasks_per_vector, true) ;
}
//----------------------------------------------------------------------
// allocate workspace
//----------------------------------------------------------------------
size_t wspace = 0 ;
if (use_coarse_tasks)
{
//------------------------------------------------------------------
// C<#M> = A*B using coarse tasks where A is sparse/hyper
//------------------------------------------------------------------
GB_WERK_PUSH (H_slice, ntasks, int64_t) ;
if (H_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
int64_t hwork = 0 ;
for (int tid = 0 ; tid < ntasks ; tid++)
{
int64_t jstart, jend ;
GB_PARTITION (jstart, jend, B->vdim, tid, ntasks) ;
int64_t jtask = jend - jstart ;
int64_t jpanel = GB_IMIN (jtask, GB_SAXBIT_PANEL_SIZE) ;
H_slice [tid] = hwork ;
// bitmap case always needs Hx workspace
hwork += jpanel ;
}
wspace = hwork * C->vlen ;
}
else if (!use_atomics)
{
//------------------------------------------------------------------
// C<#M> = A*B using fine tasks and workspace, with no atomics
//------------------------------------------------------------------
// Each fine task is given size-(C->vlen) workspace to compute its
// result in the first phase, W(:,tid) = A(:,k1:k2) * B(k1:k2,j),
// where k1:k2 is defined by the fine_tid of the task. The
// workspaces are then summed into C in the second phase.
wspace = (C->vlen) * ntasks ;
}
if (wspace > 0)
{
//------------------------------------------------------------------
// allocate Wf and Wcx workspaces
//------------------------------------------------------------------
size_t csize = (C_iso) ? 0 : C->type->size ;
Wf = GB_MALLOC_MEMORY (wspace, sizeof (int8_t), &Wf_size) ;
Wcx = GB_MALLOC_MEMORY (wspace, csize, &Wcx_size) ;
if (Wf == NULL || Wcx == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
}
}
//--------------------------------------------------------------------------
// C<#M>=A*B
//--------------------------------------------------------------------------
if (C_iso)
{
//----------------------------------------------------------------------
// via the iso kernel
//----------------------------------------------------------------------
GBURBLE ("(iso bitmap saxpy) ") ;
memcpy (C->x, cscalar, ctype->size) ;
info = GB (_AsaxbitB__any_pair_iso) (C, M, Mask_comp, Mask_struct,
A, B, ntasks, nthreads,
nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
M_ek_slicing, M_nthreads, M_ntasks, A_slice, H_slice,
Wcx, Wf) ;
}
else
{
//----------------------------------------------------------------------
// via the factory kernel
//----------------------------------------------------------------------
info = GrB_NO_VALUE ;
GBURBLE ("(bitmap saxpy) ") ;
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AsaxbitB(add,mult,xname) \
GB (_AsaxbitB_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_AsaxbitB (add,mult,xname) (C, M, Mask_comp, \
Mask_struct, A, B, ntasks, nthreads, \
nfine_tasks_per_vector, use_coarse_tasks, use_atomics, \
M_ek_slicing, M_nthreads, M_ntasks, \
A_slice, H_slice, Wcx, Wf) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
if (GB_AxB_semiring_builtin (A, A_is_pattern, B, B_is_pattern,
semiring, flipxy, &mult_binop_code, &add_binop_code, &xcode,
&ycode, &zcode))
{
#include "mxm/factory/GB_AxB_factory.c"
}
}
#endif
//----------------------------------------------------------------------
// via the JIT or PreJIT kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_AxB_saxbit_jit (C, M, Mask_comp,
Mask_struct, A, B, semiring, flipxy, ntasks, nthreads,
nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
M_ek_slicing, M_nthreads, M_ntasks, A_slice, H_slice, Wcx, Wf) ;
}
//----------------------------------------------------------------------
// via the generic kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_AxB_saxpy_generic (C, M, Mask_comp, Mask_struct,
true, A, A_is_pattern, B, B_is_pattern, semiring,
flipxy, GB_SAXPY_METHOD_BITMAP, ntasks, nthreads,
/* unused: */ NULL, 0, 0, NULL,
nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
if (info != GrB_SUCCESS)
{
// out of memory, or other error
GB_FREE_ALL ;
return (info) ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
ASSERT_MATRIX_OK (C, "C bitmap saxpy output", GB0) ;
return (GrB_SUCCESS) ;
}
|