File: GB_AxB_saxbit.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (351 lines) | stat: -rw-r--r-- 13,336 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//------------------------------------------------------------------------------
// GB_AxB_saxbit: compute C=A*B, C<M>=A*B, or C<!M>=A*B; C bitmap
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_FREE_MEMORY (&Wf, Wf_size) ;           \
    GB_FREE_MEMORY (&Wcx, Wcx_size) ;         \
    GB_WERK_POP (H_slice, int64_t) ;        \
    GB_WERK_POP (A_slice, int64_t) ;        \
    GB_WERK_POP (M_ek_slicing, int64_t) ;   \
}

#define GB_FREE_ALL                         \
{                                           \
    GB_FREE_WORKSPACE ;                     \
    GB_phybix_free (C) ;                    \
}

#include "mxm/GB_mxm.h"
#include "jitifyer/GB_stringify.h"
#include "mxm/GB_AxB_saxpy.h"
#include "binaryop/GB_binop.h"
#include "mxm/GB_AxB_saxpy_generic.h"
#include "mxm/GB_AxB__include1.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif

//------------------------------------------------------------------------------
// GB_AxB_saxbit: compute C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------------------

// TODO: also pass in the user's C and the accum operator, and done_in_place,
// like GB_AxB_dot4.

GrB_Info GB_AxB_saxbit        // C = A*B where C is bitmap
(
    GrB_Matrix C,                   // output matrix, static header
    const bool C_iso,               // true if C is iso
    const GB_void *cscalar,         // iso value of C
    const GrB_Matrix M,             // optional mask matrix
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;

    ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for bitmap saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_ZOMBIES (M)) ;

    ASSERT_MATRIX_OK (A, "A for bitmap saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;

    ASSERT_MATRIX_OK (B, "B for bitmap saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT (GB_JUMBLED_OK (B)) ;
    ASSERT (!GB_ZOMBIES (B)) ;

    ASSERT_SEMIRING_OK (semiring, "semiring for bitmap saxpy A*B", GB0) ;
    ASSERT (A->vdim == B->vlen) ;

    //--------------------------------------------------------------------------
    // declare workspace
    //--------------------------------------------------------------------------

    int8_t  *restrict Wf  = NULL ; size_t Wf_size = 0 ;
    GB_void *restrict Wcx = NULL ; size_t Wcx_size = 0 ;
    GB_WERK_DECLARE (H_slice, int64_t) ;
    GB_WERK_DECLARE (A_slice, int64_t) ;
    GB_WERK_DECLARE (M_ek_slicing, int64_t) ;

    int M_nthreads = 0 ;
    int M_ntasks = 0 ;

    int nthreads = 0 ;
    int ntasks = 0 ;
    int nfine_tasks_per_vector  = 0 ;
    bool use_coarse_tasks = false ;
    bool use_atomics = false ;

    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;

    //--------------------------------------------------------------------------
    // construct C
    //--------------------------------------------------------------------------

    // TODO: If C is the right type on input, and accum is the same as the
    // monoid, then do not create C, but compute in-place instead.

    // Cb is set to all zero.  C->x is malloc'd unless C is iso, in which case
    // it is calloc'ed.

    GrB_Type ctype = semiring->add->op->ztype ;
    int64_t cnzmax = 1 ;
    (void) GB_int64_multiply ((uint64_t *) (&cnzmax), A->vlen, B->vdim) ;
    GB_OK (GB_new_bix (&C, // existing header
        ctype, A->vlen, B->vdim, GB_ph_null, true, GxB_BITMAP, true,
        GB_HYPER_SWITCH_DEFAULT, -1, cnzmax, true, C_iso,
        /* OK: */ false, false, false)) ;
    C->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // get the semiring operators
    //--------------------------------------------------------------------------

    GrB_BinaryOp mult = semiring->multiply ;
    ASSERT (mult->ztype == semiring->add->op->ztype) ;
    bool A_is_pattern, B_is_pattern ;
    GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;

    //--------------------------------------------------------------------------
    // slice the M matrix
    //--------------------------------------------------------------------------

    if (M != NULL)
    { 
        GB_SLICE_MATRIX2 (M, 8) ;
    }

    //--------------------------------------------------------------------------
    // slice the A matrix (if sparse or hyper) and construct the tasks
    //--------------------------------------------------------------------------

    if (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A))
    {

        //----------------------------------------------------------------------
        // slice A if it is sparse or hypersparse
        //----------------------------------------------------------------------

        GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
            &use_coarse_tasks, &use_atomics, GB_nnz_held (A), GB_nnz_held (B),
            B->vdim, C->vlen) ;
        if (!use_coarse_tasks)
        {
            // slice the matrix A for each team of fine tasks
            GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
            if (A_slice == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }
            GB_p_slice (A_slice, A->p, A->p_is_32, A->nvec,
                nfine_tasks_per_vector, true) ;
        }

        //----------------------------------------------------------------------
        // allocate workspace
        //----------------------------------------------------------------------

        size_t wspace = 0 ;

        if (use_coarse_tasks)
        {

            //------------------------------------------------------------------
            // C<#M> = A*B using coarse tasks where A is sparse/hyper
            //------------------------------------------------------------------

            GB_WERK_PUSH (H_slice, ntasks, int64_t) ;
            if (H_slice == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }

            int64_t hwork = 0 ;
            for (int tid = 0 ; tid < ntasks ; tid++)
            { 
                int64_t jstart, jend ;
                GB_PARTITION (jstart, jend, B->vdim, tid, ntasks) ;
                int64_t jtask = jend - jstart ;
                int64_t jpanel = GB_IMIN (jtask, GB_SAXBIT_PANEL_SIZE) ;
                H_slice [tid] = hwork ;
                // bitmap case always needs Hx workspace
                hwork += jpanel ;
            }

            wspace = hwork * C->vlen ;

        }
        else if (!use_atomics)
        { 

            //------------------------------------------------------------------
            // C<#M> = A*B using fine tasks and workspace, with no atomics
            //------------------------------------------------------------------

            // Each fine task is given size-(C->vlen) workspace to compute its
            // result in the first phase, W(:,tid) = A(:,k1:k2) * B(k1:k2,j),
            // where k1:k2 is defined by the fine_tid of the task.  The
            // workspaces are then summed into C in the second phase.

            wspace = (C->vlen) * ntasks ;
        }

        if (wspace > 0)
        {

            //------------------------------------------------------------------
            // allocate Wf and Wcx workspaces
            //------------------------------------------------------------------

            size_t csize = (C_iso) ? 0 : C->type->size ;
            Wf  = GB_MALLOC_MEMORY (wspace, sizeof (int8_t), &Wf_size) ;
            Wcx = GB_MALLOC_MEMORY (wspace, csize, &Wcx_size) ;
            if (Wf == NULL || Wcx == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // C<#M>=A*B
    //--------------------------------------------------------------------------

    if (C_iso)
    { 

        //----------------------------------------------------------------------
        // via the iso kernel
        //----------------------------------------------------------------------

        GBURBLE ("(iso bitmap saxpy) ") ;
        memcpy (C->x, cscalar, ctype->size) ;
        info = GB (_AsaxbitB__any_pair_iso) (C, M, Mask_comp, Mask_struct,
            A, B, ntasks, nthreads,
            nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
            M_ek_slicing, M_nthreads, M_ntasks, A_slice, H_slice,
            Wcx, Wf) ;

    }
    else
    {

        //----------------------------------------------------------------------
        // via the factory kernel
        //----------------------------------------------------------------------

        info = GrB_NO_VALUE ;
        GBURBLE ("(bitmap saxpy) ") ;

        #ifndef GBCOMPACT
        GB_IF_FACTORY_KERNELS_ENABLED
        { 

            //------------------------------------------------------------------
            // define the worker for the switch factory
            //------------------------------------------------------------------

            #define GB_AsaxbitB(add,mult,xname)  \
                GB (_AsaxbitB_ ## add ## mult ## xname)

            #define GB_AxB_WORKER(add,mult,xname)                           \
            {                                                               \
                info = GB_AsaxbitB (add,mult,xname) (C, M, Mask_comp,       \
                    Mask_struct, A, B, ntasks, nthreads,                    \
                    nfine_tasks_per_vector, use_coarse_tasks, use_atomics,  \
                    M_ek_slicing, M_nthreads, M_ntasks,                     \
                    A_slice, H_slice, Wcx, Wf) ;                            \
            }                                                               \
            break ;

            //------------------------------------------------------------------
            // launch the switch factory
            //------------------------------------------------------------------

            GB_Opcode mult_binop_code, add_binop_code ;
            GB_Type_code xcode, ycode, zcode ;
            if (GB_AxB_semiring_builtin (A, A_is_pattern, B, B_is_pattern,
                semiring, flipxy, &mult_binop_code, &add_binop_code, &xcode,
                &ycode, &zcode))
            { 
                #include "mxm/factory/GB_AxB_factory.c"
            }
        }
        #endif

        //----------------------------------------------------------------------
        // via the JIT or PreJIT kernel
        //----------------------------------------------------------------------

        if (info == GrB_NO_VALUE)
        { 
            info = GB_AxB_saxbit_jit (C, M, Mask_comp,
                Mask_struct, A, B, semiring, flipxy, ntasks, nthreads,
                nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
                M_ek_slicing, M_nthreads, M_ntasks, A_slice, H_slice, Wcx, Wf) ;
        }

        //----------------------------------------------------------------------
        // via the generic kernel
        //----------------------------------------------------------------------

        if (info == GrB_NO_VALUE)
        { 
            info = GB_AxB_saxpy_generic (C, M, Mask_comp, Mask_struct,
                true, A, A_is_pattern, B, B_is_pattern, semiring,
                flipxy, GB_SAXPY_METHOD_BITMAP, ntasks, nthreads,
                /* unused: */ NULL, 0, 0, NULL,
                nfine_tasks_per_vector, use_coarse_tasks, use_atomics,
                M_ek_slicing, M_nthreads, M_ntasks,
                A_slice, H_slice, Wcx, Wf) ;
        }
    }

    if (info != GrB_SUCCESS)
    { 
        // out of memory, or other error
        GB_FREE_ALL ;
        return (info) ;
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C bitmap saxpy output", GB0) ;
    return (GrB_SUCCESS) ;
}