1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_cumsum: finalize nnz(C(:,j)) and find cumulative sum of Cp
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// phase3: fine tasks finalize their computation nnz(C(:,j))
// phase4: cumulative sum of C->p
#include "GB.h"
GB_CALLBACK_SAXPY3_CUMSUM_PROTO (GB_AxB_saxpy3_cumsum)
{
//--------------------------------------------------------------------------
// get C
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (C)) ;
ASSERT (!GB_IS_FULL (C)) ;
GB_Cp_DECLARE (Cp, ) ; GB_Cp_PTR (Cp, C) ;
const int64_t cvlen = C->vlen ;
const int64_t cnvec = C->nvec ;
const bool Cp_is_32 = C->p_is_32 ;
ASSERT (Cp != NULL) ;
//==========================================================================
// phase3: count nnz(C(:,j)) for fine tasks
//==========================================================================
int taskid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < nfine ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
// int64_t kk = SaxpyTasks [taskid].vector ;
uint64_t hash_size = SaxpyTasks [taskid].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
int team_size = SaxpyTasks [taskid].team_size ;
int leader = SaxpyTasks [taskid].leader ;
int my_teamid = taskid - leader ;
int64_t my_cjnz = 0 ;
if (use_Gustavson)
{
//------------------------------------------------------------------
// phase3: fine Gustavson task, C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------
// Hf [i] == 2 if C(i,j) is an entry in C(:,j)
int8_t *restrict Hf ;
Hf = (int8_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t istart, iend ;
GB_PARTITION (istart, iend, cvlen, my_teamid, team_size) ;
for (int64_t i = istart ; i < iend ; i++)
{
if (Hf [i] == 2)
{
my_cjnz++ ;
}
}
}
else
{
//------------------------------------------------------------------
// phase3: fine hash task, C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------
// (Hf [hash] & 3) == 2 if C(i,j) is an entry in C(:,j),
// and the index i of the entry is (Hf [hash] >> 2) - 1.
uint64_t *restrict Hf = (uint64_t *restrict) SaxpyTasks [taskid].Hf;
uint64_t mystart, myend ;
GB_PARTITION (mystart, myend, hash_size, my_teamid, team_size) ;
for (uint64_t hash = mystart ; hash < myend ; hash++)
{
if ((Hf [hash] & 3) == 2)
{
my_cjnz++ ;
}
}
}
SaxpyTasks [taskid].my_cjnz = my_cjnz ; // count this task's nnz(C(:,j))
}
//==========================================================================
// phase4: compute Cp with cumulative sum
//==========================================================================
//--------------------------------------------------------------------------
// sum nnz (C (:,j)) for fine tasks
//--------------------------------------------------------------------------
// SaxpyTasks [taskid].my_cjnz is the # of unique entries found in C(:,j) by
// that task. Sum these terms to compute total # of entries in C(:,j).
for (taskid = 0 ; taskid < nfine ; taskid++)
{
int64_t kk = SaxpyTasks [taskid].vector ;
GB_ISET (Cp, kk, 0) ; // Cp [kk] = 0 ;
}
for (taskid = 0 ; taskid < nfine ; taskid++)
{
int64_t kk = SaxpyTasks [taskid].vector ;
int64_t my_cjnz = SaxpyTasks [taskid].my_cjnz ;
GB_IINC (Cp, kk, my_cjnz) ; // Cp [kk] += my_cjnz ;
ASSERT (my_cjnz <= cvlen) ;
}
//--------------------------------------------------------------------------
// cumulative sum for Cp (fine and coarse tasks)
//--------------------------------------------------------------------------
// Cp [kk] is now nnz (C (:,j)), for all vectors j, whether computed by
// fine tasks or coarse tasks, and where j == GBh_B (Bh, kk)
#ifdef GBCOVER
// tell GB_cumsum to fake a failure and return ok as false:
if (GB_Global_hack_get (4)) GB_Global_hack_set (5, 1) ;
#endif
int nth = GB_nthreads (cnvec, chunk, nthreads) ;
int64_t nvec_nonempty ;
bool ok = GB_cumsum (Cp, Cp_is_32, cnvec, &nvec_nonempty, nth, Werk) ;
if (ok)
{
GB_nvec_nonempty_set (C, nvec_nonempty) ;
}
#ifdef GBCOVER
// restore the hack (for test coverage only)
if (GB_Global_hack_get (4)) GB_Global_hack_set (5, 0) ;
#endif
#ifdef GB_DEBUG
int64_t cnz1 = 0, cnz2 = 0 ;
if (Cp_is_32)
{
uint32_t *Cp_debug = C->p ;
if (ok) cnz1 = Cp_debug [cnvec] ;
for (int k = 0 ; k <= cnvec ; k++)
{
if (!ok && k < cnvec) cnz1 += Cp_debug [k] ;
}
}
else
{
uint64_t *Cp_debug = C->p ;
if (ok) cnz1 = Cp_debug [cnvec] ;
for (int k = 0 ; k <= cnvec ; k++)
{
if (!ok && k < cnvec) cnz1 += Cp_debug [k] ;
}
}
#endif
if (!ok)
{
// convert Cp to uint64_t and redo the cumulative sum
ASSERT (Cp_is_32) ;
ASSERT (!C->p_shallow) ;
void *Cp_new = NULL ;
size_t Cp_new_size = 0 ;
Cp_new = GB_MALLOC_MEMORY (cnvec+1, sizeof (uint64_t), &Cp_new_size) ;
if (Cp_new == NULL)
{
return (GrB_OUT_OF_MEMORY) ;
}
// Cp_new = (uint64_t) Cp, casting from 32-bit to 64-bit
GB_cast_int (Cp_new, GB_UINT64_code, Cp, GB_UINT32_code, cnvec+1, nth) ;
GB_FREE_MEMORY (&Cp, C->p_size) ;
C->p = Cp_new ;
C->p_size = Cp_new_size ;
C->p_is_32 = false ;
// redo the cumsum (this will always succeed)
GB_cumsum (C->p, false, cnvec, &nvec_nonempty, nth, Werk) ;
GB_nvec_nonempty_set (C, nvec_nonempty) ;
}
#ifdef GB_DEBUG
if (C->p_is_32)
{
uint32_t *Cp_debug = C->p ;
cnz2 = Cp_debug [cnvec] ;
}
else
{
uint64_t *Cp_debug = C->p ;
cnz2 = Cp_debug [cnvec] ;
}
ASSERT (cnz1 == cnz2) ;
#endif
//--------------------------------------------------------------------------
// cumulative sum of nnz (C (:,j)) for each team of fine tasks
//--------------------------------------------------------------------------
int64_t cjnz_sum = 0 ;
for (taskid = 0 ; taskid < nfine ; taskid++)
{
if (taskid == SaxpyTasks [taskid].leader)
{
cjnz_sum = 0 ;
}
int64_t my_cjnz = SaxpyTasks [taskid].my_cjnz ;
SaxpyTasks [taskid].my_cjnz = cjnz_sum ;
cjnz_sum += my_cjnz ;
}
return (GrB_SUCCESS) ;
}
|