1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy4 computes C+=A*B where C is as-if-full, A is
// sparse/hypersparse, and B is bitmap/full (or as-if-full). No mask is
// present, C_replace is false, the accum matches the monoid, no typecasting is
// needed, and no user-defined types or operators are used.
// The ANY monoid is not supported, since its use as accum would be unusual.
// The monoid must have an atomic implementation, so the TIMES monoid for
// complex types is not supported.
//------------------------------------------------------------------------------
#include "mxm/GB_mxm.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (A_slice, int64_t) ; \
GB_WERK_POP (H_slice, int64_t) ; \
GB_FREE_MEMORY (&Wcx, Wcx_size) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy4 // C += A*B
(
GrB_Matrix C, // users input/output matrix
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
const GrB_Semiring semiring, // semiring that defines C=A*B and accum
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
bool *done_in_place, // if true, saxpy4 has computed the result
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_WERK_DECLARE (A_slice, int64_t) ;
GB_WERK_DECLARE (H_slice, int64_t) ;
GB_void *restrict Wcx= NULL ; size_t Wcx_size = 0 ;
ASSERT_MATRIX_OK (C, "C for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_IS_FULL (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT_MATRIX_OK (A, "A for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT_MATRIX_OK (B, "B for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for saxpy4 C+=A*B", GB0) ;
ASSERT (A->vdim == B->vlen) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
ASSERT (mult->ztype == semiring->add->op->ztype) ;
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
&xcode, &ycode, &zcode) ;
if (add_binop_code == GB_ANY_binop_code)
{
// The semiring cannot use the ANY monoid.
// The semiring must be builtin, or use the JIT (no generic method).
GBURBLE ("(punt) ") ;
return (GrB_NO_VALUE) ;
}
GBURBLE ("(saxpy4: %s += %s*%s) ",
GB_sparsity_char_matrix (C),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
//--------------------------------------------------------------------------
// ensure C is non-iso
//--------------------------------------------------------------------------
GB_OK (GB_convert_any_to_non_iso (C, true)) ;
//--------------------------------------------------------------------------
// determine the # of threads to use and the parallel tasks
//--------------------------------------------------------------------------
int nthreads, ntasks, nfine_tasks_per_vector ;
bool use_coarse_tasks, use_atomics ;
GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
&use_coarse_tasks, &use_atomics, GB_nnz (A), GB_nnz_held (B),
B->vdim, C->vlen) ;
//--------------------------------------------------------------------------
// allocate workspace and slice A
//--------------------------------------------------------------------------
size_t wspace = 0 ;
if (use_coarse_tasks)
{
//----------------------------------------------------------------------
// allocate workspace for coarse tasks
//----------------------------------------------------------------------
GB_WERK_PUSH (H_slice, ntasks, int64_t) ;
if (H_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
int64_t hwork = 0 ;
for (int tid = 0 ; tid < ntasks ; tid++)
{
int64_t jstart, jend ;
GB_PARTITION (jstart, jend, B->vdim, tid, ntasks) ;
int64_t jtask = jend - jstart ;
int64_t jpanel = GB_IMIN (jtask, GB_SAXPY4_PANEL_SIZE) ;
H_slice [tid] = hwork ;
// full case needs Hx workspace only if jpanel > 1
if (jpanel > 1)
{
hwork += jpanel ;
}
}
wspace = hwork * C->vlen * (C->type->size) ;
}
else
{
//----------------------------------------------------------------------
// allocate workspace for fine tasks (both atomic and non-atomic)
//----------------------------------------------------------------------
// slice A for each team of fine tasks (atomic and non-atomic)
GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
if (A_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_p_slice (A_slice, A->p, A->p_is_32, A->nvec, nfine_tasks_per_vector,
/* perfectly_balanced: */ true) ;
if (!use_atomics)
{
// Each non-atomic fine task is given size-cvlen workspace to
// compute its result in the first phase, W(:,tid) = A(:,k1:k2) *
// B(k1:k2,j), where k1:k2 is defined by the fine_tid of the task.
// The workspaces are then summed into C in the second phase.
// Atomic fine takes do not require any Wcx workspace; they
// use just A_slice.
wspace = (C->vlen) * ntasks * (C->type->size) ;
}
}
if (wspace > 0)
{
Wcx = GB_MALLOC_MEMORY (wspace, sizeof (GB_void), &Wcx_size) ;
if (Wcx == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
}
//--------------------------------------------------------------------------
// via the factory kernel
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//----------------------------------------------------------------------
// define the worker for the switch factory
//----------------------------------------------------------------------
#define GB_Asaxpy4B(add,mult,xname) \
GB (_Asaxpy4B_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_Asaxpy4B (add,mult,xname) (C, A, B, ntasks, nthreads, \
nfine_tasks_per_vector, use_coarse_tasks, use_atomics, \
A_slice, H_slice, Wcx) ; \
} \
break ;
//----------------------------------------------------------------------
// launch the switch factory
//----------------------------------------------------------------------
// disabled the ANY monoid
#define GB_NO_ANY_MONOID
if (builtin_semiring)
{
#include "mxm/factory/GB_AxB_factory.c"
}
}
#endif
//--------------------------------------------------------------------------
// via the JIT or PreJIT kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_AxB_saxpy4_jit (C, A, B, semiring, flipxy,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, A_slice, H_slice, Wcx) ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
if (info == GrB_NO_VALUE)
{
// saxpy4 doesn't handle this case; punt to saxpy3, bitmap saxpy, etc
GBURBLE ("(punt) ") ;
}
else if (info == GrB_SUCCESS)
{
ASSERT_MATRIX_OK (C, "saxpy4: output", GB0) ;
(*done_in_place) = true ;
}
else
{
// out of memory, or other error
GB_FREE_ALL ;
}
return (info) ;
}
|