File: GB_AxB_saxpy4.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (282 lines) | stat: -rw-r--r-- 10,309 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// GB_AxB_saxpy4 computes C+=A*B where C is as-if-full, A is
// sparse/hypersparse, and B is bitmap/full (or as-if-full).  No mask is
// present, C_replace is false, the accum matches the monoid, no typecasting is
// needed, and no user-defined types or operators are used.

// The ANY monoid is not supported, since its use as accum would be unusual.
// The monoid must have an atomic implementation, so the TIMES monoid for
// complex types is not supported.

//------------------------------------------------------------------------------

#include "mxm/GB_mxm.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif

#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_WERK_POP (A_slice, int64_t) ;        \
    GB_WERK_POP (H_slice, int64_t) ;        \
    GB_FREE_MEMORY (&Wcx, Wcx_size) ;       \
}

#define GB_FREE_ALL                         \
{                                           \
    GB_FREE_WORKSPACE ;                     \
    GB_phybix_free (C) ;                    \
}

//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------

GrB_Info GB_AxB_saxpy4              // C += A*B
(
    GrB_Matrix C,                   // users input/output matrix
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B and accum
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *done_in_place,            // if true, saxpy4 has computed the result
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GB_WERK_DECLARE (A_slice, int64_t) ;
    GB_WERK_DECLARE (H_slice, int64_t) ;
    GB_void *restrict Wcx= NULL ; size_t Wcx_size = 0 ;

    ASSERT_MATRIX_OK (C, "C for saxpy4 C+=A*B", GB0) ;
    ASSERT (GB_IS_FULL (C)) ;
    ASSERT (!GB_PENDING (C)) ;
    ASSERT (!GB_JUMBLED (C)) ;
    ASSERT (!GB_ZOMBIES (C)) ;

    ASSERT_MATRIX_OK (A, "A for saxpy4 C+=A*B", GB0) ;
    ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;

    ASSERT_MATRIX_OK (B, "B for saxpy4 C+=A*B", GB0) ;
    ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT (!GB_JUMBLED (B)) ;
    ASSERT (!GB_ZOMBIES (B)) ;

    ASSERT_SEMIRING_OK (semiring, "semiring for saxpy4 C+=A*B", GB0) ;
    ASSERT (A->vdim == B->vlen) ;

    //--------------------------------------------------------------------------
    // get the semiring operators
    //--------------------------------------------------------------------------

    GrB_BinaryOp mult = semiring->multiply ;
    ASSERT (mult->ztype == semiring->add->op->ztype) ;
    bool A_is_pattern, B_is_pattern ;
    GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;

    GB_Opcode mult_binop_code, add_binop_code ;
    GB_Type_code xcode, ycode, zcode ;
    bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
        B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
        &xcode, &ycode, &zcode) ;

    if (add_binop_code == GB_ANY_binop_code)
    { 
        // The semiring cannot use the ANY monoid.
        // The semiring must be builtin, or use the JIT (no generic method).
        GBURBLE ("(punt) ") ;
        return (GrB_NO_VALUE) ;
    }

    GBURBLE ("(saxpy4: %s += %s*%s) ",
            GB_sparsity_char_matrix (C),
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B)) ;

    //--------------------------------------------------------------------------
    // ensure C is non-iso
    //--------------------------------------------------------------------------

    GB_OK (GB_convert_any_to_non_iso (C, true)) ;

    //--------------------------------------------------------------------------
    // determine the # of threads to use and the parallel tasks
    //--------------------------------------------------------------------------

    int nthreads, ntasks, nfine_tasks_per_vector ;
    bool use_coarse_tasks, use_atomics ;
    GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
        &use_coarse_tasks, &use_atomics, GB_nnz (A), GB_nnz_held (B),
        B->vdim, C->vlen) ;

    //--------------------------------------------------------------------------
    // allocate workspace and slice A
    //--------------------------------------------------------------------------

    size_t wspace = 0 ;

    if (use_coarse_tasks)
    {

        //----------------------------------------------------------------------
        // allocate workspace for coarse tasks
        //----------------------------------------------------------------------

        GB_WERK_PUSH (H_slice, ntasks, int64_t) ;
        if (H_slice == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        int64_t hwork = 0 ;
        for (int tid = 0 ; tid < ntasks ; tid++)
        {
            int64_t jstart, jend ;
            GB_PARTITION (jstart, jend, B->vdim, tid, ntasks) ;
            int64_t jtask = jend - jstart ;
            int64_t jpanel = GB_IMIN (jtask, GB_SAXPY4_PANEL_SIZE) ;
            H_slice [tid] = hwork ;
            // full case needs Hx workspace only if jpanel > 1
            if (jpanel > 1)
            { 
                hwork += jpanel ;
            }
        }

        wspace = hwork * C->vlen * (C->type->size) ;

    }
    else
    {

        //----------------------------------------------------------------------
        // allocate workspace for fine tasks (both atomic and non-atomic)
        //----------------------------------------------------------------------

        // slice A for each team of fine tasks (atomic and non-atomic)
        GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
        if (A_slice == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
        GB_p_slice (A_slice, A->p, A->p_is_32, A->nvec, nfine_tasks_per_vector,
            /* perfectly_balanced: */ true) ;

        if (!use_atomics)
        { 
            // Each non-atomic fine task is given size-cvlen workspace to
            // compute its result in the first phase, W(:,tid) = A(:,k1:k2) *
            // B(k1:k2,j), where k1:k2 is defined by the fine_tid of the task.
            // The workspaces are then summed into C in the second phase.
            // Atomic fine takes do not require any Wcx workspace; they
            // use just A_slice.
            wspace = (C->vlen) * ntasks * (C->type->size) ;
        }
    }

    if (wspace > 0)
    {
        Wcx = GB_MALLOC_MEMORY (wspace, sizeof (GB_void), &Wcx_size) ;
        if (Wcx == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
    }

    //--------------------------------------------------------------------------
    // via the factory kernel
    //--------------------------------------------------------------------------

    info = GrB_NO_VALUE ;
    #ifndef GBCOMPACT
    GB_IF_FACTORY_KERNELS_ENABLED
    { 

        //----------------------------------------------------------------------
        // define the worker for the switch factory
        //----------------------------------------------------------------------

        #define GB_Asaxpy4B(add,mult,xname) \
            GB (_Asaxpy4B_ ## add ## mult ## xname)
        #define GB_AxB_WORKER(add,mult,xname)                               \
        {                                                                   \
            info = GB_Asaxpy4B (add,mult,xname) (C, A, B, ntasks, nthreads, \
                nfine_tasks_per_vector, use_coarse_tasks, use_atomics,      \
                A_slice, H_slice, Wcx) ;                                    \
        }                                                                   \
        break ;

        //----------------------------------------------------------------------
        // launch the switch factory
        //----------------------------------------------------------------------

        // disabled the ANY monoid
        #define GB_NO_ANY_MONOID
        if (builtin_semiring)
        {
            #include "mxm/factory/GB_AxB_factory.c"
        }

    }
    #endif

    //--------------------------------------------------------------------------
    // via the JIT or PreJIT kernel
    //--------------------------------------------------------------------------

    if (info == GrB_NO_VALUE)
    { 
        info = GB_AxB_saxpy4_jit (C, A, B, semiring, flipxy,
            ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
            use_atomics, A_slice, H_slice, Wcx) ;
    }


    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    if (info == GrB_NO_VALUE)
    { 
        // saxpy4 doesn't handle this case; punt to saxpy3, bitmap saxpy, etc
        GBURBLE ("(punt) ") ;
    }
    else if (info == GrB_SUCCESS)
    { 
        ASSERT_MATRIX_OK (C, "saxpy4: output", GB0) ;
        (*done_in_place) = true ;
    }
    else
    { 
        // out of memory, or other error
        GB_FREE_ALL ;
    }
    return (info) ;
}