1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy5: compute C+=A*B where A is bitmap/full and B is sparse/hyper
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy5 computes C+=A*B where C is full, A is bitmap/full, and B is
// sparse/hypersparse. No mask is present, C_replace is false, and the accum
// matches the monoid.
// The type of A and C must match the multiply op. B can be typecasted
// if using the JIT.
// See also GB_AxB_saxpy4, which computes C+=A*B but with the sparsity formats
// of A and B reversed.
// Typically, if B is a large sparse matrix, the number of columns of A and C
// will be large, so A and C will typically be short-and-fat dense matrices.
// As a result, only a coarse-grain method is used, where no atomics are
// needed.
// The ANY monoid is not supported, since its use as accum would be unusual.
// TODO: if the monoid is ANY, quick return GrB_SUCCESS and done_in_place
// true, also for saxpy4. No work is needed and C doesn't change.
// FUTURE: expand use of AVX to more semirings
//------------------------------------------------------------------------------
#include "mxm/GB_mxm.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_AxB__include2.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (B_slice, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
//------------------------------------------------------------------------------
// GB_AxB_saxpy5: compute C+=A*B in-place
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy5 // C += A*B
(
GrB_Matrix C, // users input/output matrix
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
const GrB_Semiring semiring, // semiring that defines C=A*B and accum
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
bool *done_in_place, // if true, saxpy5 has computed the result
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_WERK_DECLARE (B_slice, int64_t) ;
// C type must match the ztype of the monoid
ASSERT_MATRIX_OK (C, "C for saxpy5 C+=A*B", GB0) ;
ASSERT (GB_IS_FULL (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (C->type == semiring->add->op->ztype) ;
// A cannot be typecasted
ASSERT_MATRIX_OK (A, "A for saxpy5 C+=A*B", GB0) ;
ASSERT (GB_IS_BITMAP (A) || GB_IS_FULL (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (A->type == (flipxy ? semiring->multiply->ytype :
semiring->multiply->xtype)) ;
// B can have any type for the JIT kernel
ASSERT_MATRIX_OK (B, "B for saxpy5 C+=A*B", GB0) ;
ASSERT (GB_IS_SPARSE (B) || GB_IS_HYPERSPARSE (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (GB_JUMBLED_OK (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for saxpy5 C+=A*B", GB0) ;
ASSERT (A->vdim == B->vlen) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
ASSERT (mult->ztype == semiring->add->op->ztype) ;
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
&xcode, &ycode, &zcode) ;
if (add_binop_code == GB_ANY_binop_code)
{
// The semiring cannot use the ANY monoid.
// The semiring must be builtin, or use the JIT (no generic method).
GBURBLE ("(punt) ") ;
return (GrB_NO_VALUE) ;
}
GBURBLE ("(saxpy5: %s += %s*%s) ",
GB_sparsity_char_matrix (C),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
//--------------------------------------------------------------------------
// ensure C is non-iso
//--------------------------------------------------------------------------
GB_OK (GB_convert_any_to_non_iso (C, true)) ;
//--------------------------------------------------------------------------
// determine the # of threads to use and the parallel tasks
//--------------------------------------------------------------------------
int64_t anz = GB_nnz_held (A) ;
int64_t bnz = GB_nnz_held (B) ;
int64_t bnvec = B->nvec ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (anz + bnz, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : 4 * nthreads ;
ntasks = GB_IMIN (ntasks, bnvec) ;
GB_WERK_PUSH (B_slice, ntasks + 1, int64_t) ;
if (B_slice == NULL)
{
// out of memory
GB_FREE_WORKSPACE ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_p_slice (B_slice, B->p, B->p_is_32, bnvec, ntasks, false) ;
//--------------------------------------------------------------------------
// via the factory kernel
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//----------------------------------------------------------------------
// define the worker for the switch factory
//----------------------------------------------------------------------
#define GB_Asaxpy5B(add,mult,xname) \
GB (_Asaxpy5B_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_Asaxpy5B (add,mult,xname) (C, A, B, \
ntasks, nthreads, B_slice) ; \
} \
break ;
//----------------------------------------------------------------------
// launch the switch factory
//----------------------------------------------------------------------
// disable the ANY monoid
#define GB_NO_ANY_MONOID
if (builtin_semiring)
{
#include "mxm/factory/GB_AxB_factory.c"
}
}
#endif
//--------------------------------------------------------------------------
// via the JIT or PreJIT kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_AxB_saxpy5_jit (C, A, B, semiring, flipxy, ntasks, nthreads,
B_slice) ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
if (info == GrB_NO_VALUE)
{
// saxpy5 doesn't handle this case; punt to saxpy3, bitmap saxpy, etc
GBURBLE ("(punt) ") ;
}
else if (info == GrB_SUCCESS)
{
ASSERT_MATRIX_OK (C, "saxpy5: output", GB0) ;
(*done_in_place) = true ;
}
else
{
// out of memory, or other error
GB_FREE_ALL ;
}
return (info) ;
}
|