1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic: compute C=A*B, C<M>=A*B, or C<!M>=A*B in parallel
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic computes C=A*B, C<M>=A*B, or C<!M>=A*B in parallel,
// with arbitrary types and operators, via memcpy and function pointers. C can
// be hyper, sparse, or bitmap (never full). For all cases, the four matrices
// C, M (if present), A, and B have the same format (by-row or by-column), or
// they represent implicitly transposed matrices with the same effect. This
// method does not handle the dot-product methods, which compute C=A'*B if A
// and B are held by column, or equivalently A*B' if both are held by row.
// This method uses GB_AxB_saxpy3_generic_* and GB_AxB_saxbit_generic_*
// to implement two meta-methods, each of which can contain further specialized
// methods (such as the fine/ coarse x Gustavson/Hash, mask/no-mask methods in
// saxpy3):
// saxpy3: general purpose method, where C is sparse or hypersparse,
// via GB_AxB_saxpy3_template.c. SaxpyTasks holds the (fine/coarse x
// Gustavson/Hash) tasks constructed by GB_AxB_saxpy3_slice*.
// saxbit: general purpose method, where C is bitmap, via
// GB_AxB_saxbit_template.c.
// C is not iso, and it is never full.
//------------------------------------------------------------------------------
#include "mxm/GB_mxm.h"
#include "binaryop/GB_binop.h"
#include "mxm/GB_AxB_saxpy_generic.h"
GrB_Info GB_AxB_saxpy_generic
(
GrB_Matrix C, // any sparsity
const GrB_Matrix M,
bool Mask_comp,
const bool Mask_struct,
const bool M_in_place, // ignored if C is bitmap
const GrB_Matrix A,
bool A_is_pattern,
const GrB_Matrix B,
bool B_is_pattern,
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
const int saxpy_method, // saxpy3 or bitmap method
const int ntasks,
const int nthreads,
// for saxpy3 only:
GB_saxpy3task_struct *restrict SaxpyTasks, // NULL if C is bitmap
const int nfine,
const int do_sort, // if true, sort in saxpy3
GB_Werk Werk,
// for saxbit only:
const int nfine_tasks_per_vector,
const bool use_coarse_tasks,
const bool use_atomics,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks,
const int64_t *restrict A_slice,
const int64_t *restrict H_slice,
GB_void *restrict Wcx,
int8_t *restrict Wf
)
{
//--------------------------------------------------------------------------
// get operators, functions, workspace, contents of A, B, and C
//--------------------------------------------------------------------------
GrB_Info info = GrB_NO_VALUE ;
GrB_BinaryOp mult = semiring->multiply ;
GB_Opcode opcode = mult->opcode ;
//--------------------------------------------------------------------------
// C = A*B via saxpy3 or bitmap method, function pointers, and typecasting
//--------------------------------------------------------------------------
if (opcode == GB_FIRST_binop_code)
{
//----------------------------------------------------------------------
// generic semirings with FIRST multiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic first C=A*B) ") ;
// t = A(i,k)
// mult->binop_function is not used and can be NULL. This is required
// for GB_reduce_to_vector for user-defined types.
ASSERT (!flipxy) ;
ASSERT (B_is_pattern) ;
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_first (C, M, Mask_comp, Mask_struct,
M_in_place, A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap
info = GB_AxB_saxbit_generic_first (C, M, Mask_comp, Mask_struct,
M_in_place, A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
else if (opcode == GB_SECOND_binop_code)
{
//----------------------------------------------------------------------
// generic semirings with SECOND multiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic second C=A*B) ") ;
// t = B(i,k)
// mult->binop_function is not used and can be NULL. This is required
// for GB_reduce_to_vector for user-defined types.
ASSERT (!flipxy) ;
ASSERT (A_is_pattern) ;
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_second (C, M, Mask_comp, Mask_struct,
M_in_place, A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap
info = GB_AxB_saxbit_generic_second (C, M, Mask_comp, Mask_struct,
M_in_place, A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
else if (mult->binop_function != NULL)
{
//----------------------------------------------------------------------
// generic semirings with standard multiply operators
//----------------------------------------------------------------------
// standard binary op
GB_BURBLE_MATRIX (C, "(generic C=A*B) ") ;
if (flipxy)
{
// t = B(k,j) * A(i,k)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is flipped
info = GB_AxB_saxpy3_generic_flipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap, mult is flipped
info = GB_AxB_saxbit_generic_flipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
else
{
// t = A(i,k) * B(k,j)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is unflipped
info = GB_AxB_saxpy3_generic_unflipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap, mult is unflipped
info = GB_AxB_saxbit_generic_unflipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
}
else
{
//----------------------------------------------------------------------
// generic semirings with index binary multiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic index C=A*B) ") ;
ASSERT (mult->idxbinop_function != NULL) ;
if (flipxy)
{
// t = B(k,j) * A(i,k)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is flipped
info = GB_AxB_saxpy3_generic_idx_flipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap, mult is flipped
info = GB_AxB_saxbit_generic_idx_flipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
else
{
// t = A(i,k) * B(k,j)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is unflipped
info = GB_AxB_saxpy3_generic_idx_unflipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, SaxpyTasks, nfine, do_sort, Werk) ;
}
else
{
// C is bitmap, mult is unflipped
info = GB_AxB_saxbit_generic_idx_unflipped (C, M,
Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
ntasks, nthreads, nfine_tasks_per_vector, use_coarse_tasks,
use_atomics, M_ek_slicing, M_nthreads, M_ntasks,
A_slice, H_slice, Wcx, Wf) ;
}
}
}
return (info) ;
}
|