1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic_method: C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic_method computes C=A*B, C<M>=A*B, or C<!M>=A*B. with
// arbitrary types and operators. C can be hyper, sparse, or bitmap, but not
// full. For all cases, the four matrices C, M (if present), A, and B have the
// same format (by-row or by-column), or they represent implicitly transposed
// matrices with the same effect. This method does not handle the dot-product
// methods, which compute C=A'*B if A and B are held by column, or equivalently
// A*B' if both are held by row.
// This method uses GB_AxB_saxpy_generic_template.c to implement two
// meta-methods, each of which can contain further specialized methods (such as
// the fine/coarse x Gustavson/Hash, mask/no-mask methods in saxpy3):
// saxpy3: general purpose method, where C is sparse or hypersparse,
// via GB_AxB_saxpy3_template.c. SaxpyTasks holds the (fine/coarse x
// Gustavson/Hash) tasks constructed by GB_AxB_saxpy3_slice*.
// saxbit: general purpose method, where C is bitmap, via
// GB_AxB_saxbit_template.c. The method constructs its own
// tasks in workspace defined and freed in that template.
// C is not iso, nor is it full.
// This template is used to construct the following methods, all of which
// are called by GB_AxB_saxpy_generic:
// GB_AxB_saxpy3_generic_first
// GB_AxB_saxpy3_generic_second
// GB_AxB_saxpy3_generic_flipped
// GB_AxB_saxpy3_generic_unflipped
// GB_AxB_saxbit_generic_first
// GB_AxB_saxbit_generic_second
// GB_AxB_saxbit_generic_flipped
// GB_AxB_saxbit_generic_unflipped
//------------------------------------------------------------------------------
#include "mxm/GB_AxB_saxpy.h"
#include "binaryop/GB_binop.h"
#include "assign/GB_bitmap_assign_methods.h"
#include "mxm/include/GB_mxm_shared_definitions.h"
#include "mxm/GB_AxB_saxpy_generic.h"
#include "generic/GB_generic.h"
GrB_Info GB_AXB_SAXPY_GENERIC_METHOD
(
GrB_Matrix C, // any sparsity except full
const GrB_Matrix M,
bool Mask_comp,
const bool Mask_struct,
const bool M_in_place, // ignored if C is bitmap
const GrB_Matrix A,
bool A_is_pattern,
const GrB_Matrix B,
bool B_is_pattern,
const GrB_Semiring semiring, // semiring that defines C=A*B
const int ntasks,
const int nthreads,
#if GB_GENERIC_C_IS_SPARSE_OR_HYPERSPARSE
// for saxpy3 only:
GB_saxpy3task_struct *restrict SaxpyTasks,
const int nfine,
const int do_sort, // if true, sort in saxpy3
GB_Werk Werk
#else
// for saxbit only:
const int nfine_tasks_per_vector,
const bool use_coarse_tasks,
const bool use_atomics,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks,
const int64_t *restrict A_slice,
const int64_t *restrict H_slice,
GB_void *restrict Wcx,
int8_t *restrict Wf
#endif
)
{
//--------------------------------------------------------------------------
// get operators, functions, workspace, contents of A, B, and C
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
GrB_Monoid add = semiring->add ;
ASSERT (mult->ztype == add->op->ztype) ;
ASSERT (mult->ztype == C->type) ;
GxB_binary_function fmult = mult->binop_function ; // NULL if positional
GxB_index_binary_function fmult_idx = mult->idxbinop_function ;
GxB_binary_function fadd = add->op->binop_function ;
GB_Opcode opcode = mult->opcode ;
size_t csize = C->type->size ;
size_t asize = A_is_pattern ? 0 : A->type->size ;
size_t bsize = B_is_pattern ? 0 : B->type->size ;
size_t xsize = mult->xtype->size ;
size_t ysize = mult->ytype->size ;
// scalar workspace: because of typecasting, the x/y types need not
// be the same as the size of the A and B types.
// GB_GENERIC_FLIPXY false: aik = (xtype) A(i,k) and bkj = (ytype) B(k,j)
// GB_GENERIC_FLIPXY true: aik = (ytype) A(i,k) and bkj = (xtype) B(k,j)
size_t aik_size = GB_GENERIC_FLIPXY ? ysize : xsize ;
size_t bkj_size = GB_GENERIC_FLIPXY ? xsize : ysize ;
GB_cast_function cast_A, cast_B ;
#if GB_GENERIC_FLIPXY
{
// A is typecasted to y, and B is typecasted to x
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, B->type->code) ;
}
#else
{
// A is typecasted to x, and B is typecasted to y
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, B->type->code) ;
}
#endif
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
//--------------------------------------------------------------------------
// C = A*B via saxpy3 or bitmap method, function pointers, and typecasting
//--------------------------------------------------------------------------
// This is before typecast to GB_B2TYPE, so it is the size of the
// entries in the B matrix, not as typecasted to GB_B2TYPE.
#define GB_B_SIZE bsize
// definitions for GB_AxB_saxpy_generic_template.c
#include "mxm/include/GB_AxB_saxpy3_template.h"
// aik = A(i,k), located in Ax [A_iso ? 0:pA]
#undef GB_A_IS_PATTERN
#define GB_A_IS_PATTERN 0
#undef GB_DECLAREA
#define GB_DECLAREA(aik) \
GB_void aik [GB_VLA(aik_size)] ;
#undef GB_GETA
#define GB_GETA(aik,Ax,pA,A_iso) \
if (!A_is_pattern) \
{ \
cast_A (aik, Ax +((A_iso) ? 0:((pA)*asize)), asize) ; \
}
// bkj = B(k,j), located in Bx [B_iso ? 0:pB]
#undef GB_B_IS_PATTERN
#define GB_B_IS_PATTERN 0
#undef GB_DECLAREB
#define GB_DECLAREB(bkj) \
GB_void bkj [GB_VLA(bkj_size)] ;
#undef GB_GETB
#define GB_GETB(bkj,Bx,pB,B_iso) \
if (!B_is_pattern) \
{ \
cast_B (bkj, Bx +((B_iso) ? 0:((pB)*bsize)), bsize) ; \
}
// define t for each task
#undef GB_CIJ_DECLARE
#define GB_CIJ_DECLARE(t) GB_void t [GB_VLA(csize)]
// address of Cx [p]
#undef GB_CX
#define GB_CX(p) (Cx +((p)*csize))
// Cx [p] = t
#undef GB_CIJ_WRITE
#define GB_CIJ_WRITE(p,t) memcpy (GB_CX (p), t, csize)
// address of Hx [i]
#undef GB_HX
#define GB_HX(i) (Hx +((i)*csize))
// Hx [i] = t
#undef GB_HX_WRITE
#define GB_HX_WRITE(i,t) memcpy (GB_HX (i), t, csize)
// Cx [p] = Hx [i]
#undef GB_CIJ_GATHER
#define GB_CIJ_GATHER(p,i) memcpy (GB_CX (p), GB_HX(i), csize)
// Cx [p:p+len=-1] = Hx [i:i+len-1]
// via memcpy (&(Cx [p]), &(Hx [i]), len*csize)
#undef GB_CIJ_MEMCPY
#define GB_CIJ_MEMCPY(p,i,len) memcpy (GB_CX (p), GB_HX (i), (len)*csize)
// Cx [p] += Hx [i]
#undef GB_CIJ_GATHER_UPDATE
#define GB_CIJ_GATHER_UPDATE(p,i) fadd (GB_CX (p), GB_CX (p), GB_HX (i))
// Cx [p] += t
#undef GB_CIJ_UPDATE
#define GB_CIJ_UPDATE(p,t) fadd (GB_CX (p), GB_CX (p), t)
// Hx [i] += t
#undef GB_HX_UPDATE
#define GB_HX_UPDATE(i,t) fadd (GB_HX (i), GB_HX (i), t)
// generic types for C and Z
#undef GB_C_TYPE
#define GB_C_TYPE GB_void
#undef GB_Z_TYPE
#define GB_Z_TYPE GB_void
#undef GB_C_SIZE
#define GB_C_SIZE csize
#if GB_GENERIC_OP_IS_FIRST
{
// t = A(i,k)
ASSERT (B_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, aik, csize)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#elif GB_GENERIC_OP_IS_SECOND
{
// t = B(i,k)
ASSERT (A_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, bkj, csize)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#elif GB_GENERIC_FLIPXY
{
// t = B(k,j) * A(i,k)
ASSERT (fmult != NULL) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) fmult (t, bkj, aik)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#elif GB_GENERIC_NOFLIPXY
{
// t = A(i,k) * B(k,j)
ASSERT (fmult != NULL) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) fmult (t, aik, bkj)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#elif GB_GENERIC_IDX_FLIPXY
{
// t = B(k,j) * A(i,k)
ASSERT (fmult_idx != NULL) ;
const void *theta = mult->theta ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) \
fmult_idx (t, bkj, j, k, aik, k, i, theta)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#elif GB_GENERIC_IDX_NOFLIPXY
{
// t = A(i,k) * B(k,j)
ASSERT (fmult_idx != NULL) ;
const void *theta = mult->theta ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) \
fmult_idx (t, aik, i, k, bkj, k, j, theta)
#include "mxm/factory/GB_AxB_saxpy_generic_template.c"
}
#endif
return (GrB_SUCCESS) ;
}
|