1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy4_template: C+=A*B, C is full, A is sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C is full. A is hyper/sparse, B is bitmap/full. M is not present.
// C += A*B is computed with the accumulator identical to the monoid.
// This template is used by mxm/template/GB_AxB_saxpy4_meta. It is not used
// for the generic case, nor for the ANY_PAIR case. It is only used for the
// pre-generated kernels, and for the JIT.
#ifndef GB_B_SIZE
#define GB_B_SIZE sizeof (GB_B_TYPE)
#endif
#ifndef GB_C_SIZE
#define GB_C_SIZE sizeof (GB_C_TYPE)
#endif
#ifndef GB_C_ISO
#define GB_C_ISO 0
#endif
{
if (use_coarse_tasks)
{
//----------------------------------------------------------------------
// C += A*B using coarse tasks
//----------------------------------------------------------------------
int64_t cvlenx = cvlen * GB_C_SIZE ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
//------------------------------------------------------------------
// determine the vectors of B and C for this coarse task
//------------------------------------------------------------------
int64_t jstart, jend ;
GB_PARTITION (jstart, jend, bvdim, tid, ntasks) ;
int64_t jtask = jend - jstart ;
int64_t jpanel = GB_IMIN (jtask, GB_SAXPY4_PANEL_SIZE) ;
//------------------------------------------------------------------
// get the workspace for this task
//------------------------------------------------------------------
// Hx workspace to compute the panel of C
GB_C_TYPE *restrict Hx = (GB_C_TYPE *)
(Wcx + H_slice [tid] * cvlenx) ;
//------------------------------------------------------------------
// C(:,jstart:jend-1) += A * B(:,jstart:jend-1) by panel
//------------------------------------------------------------------
for (int64_t j1 = jstart ; j1 < jend ; j1 += jpanel)
{
//--------------------------------------------------------------
// get the panel of np vectors j1:j2-1
//--------------------------------------------------------------
int64_t j2 = GB_IMIN (jend, j1 + jpanel) ;
int64_t np = j2 - j1 ;
//--------------------------------------------------------------
// G = B(:,j1:j2-1), of size bvlen-by-np, in column major order
//--------------------------------------------------------------
int8_t *restrict Gb = (int8_t *) (Bb + (j1 * bvlen)) ;
#if !GB_B_IS_PATTERN
GB_B_TYPE *restrict Gx = (GB_B_TYPE *)
(((GB_void *) (B->x)) +
(B_iso ? 0 : ((j1 * bvlen) * GB_B_SIZE))) ;
#endif
//--------------------------------------------------------------
// clear the panel H to compute C(:,j1:j2-1)
//--------------------------------------------------------------
if (np == 1)
{
// Make H an alias to C(:,j1)
int64_t j = j1 ;
int64_t pC_start = j * cvlen ; // get pointer to C(:,j)
// Hx is GB_C_TYPE, not GB_void, so pointer arithmetic on
// it is by units of size sizeof (GB_C_TYPE), not bytes.
Hx = Cx + pC_start ;
}
else
{
// C is full: set Hx = identity
int64_t nc = np * cvlen ;
#if GB_HAS_IDENTITY_BYTE
memset (Hx, GB_IDENTITY_BYTE, nc * GB_C_SIZE) ;
#else
for (int64_t i = 0 ; i < nc ; i++)
{
GB_HX_WRITE (i, zidentity) ; // Hx(i) = identity
}
#endif
}
#if GB_IS_PLUS_FC32_MONOID
float *restrict Hx_real = (float *) Hx ;
float *restrict Hx_imag = Hx_real + 1 ;
#elif GB_IS_PLUS_FC64_MONOID
double *restrict Hx_real = (double *) Hx ;
double *restrict Hx_imag = Hx_real + 1 ;
#endif
//--------------------------------------------------------------
// H += A*G for one panel
//--------------------------------------------------------------
// GB_HX_COMPUTE: computes H (i,jj) += A(i,k) * B(k,j)
// where H(i,jj) is located at Hx [pH+jj], aij = A(i,k),
// and gkj = B(k,j). gb is the bitmap value for B(k,j).
#undef GB_HX_COMPUTE
#if GB_B_IS_BITMAP
#define GB_HX_COMPUTE(pH,i,gkj,gb,jj) \
if (gb) \
{ \
GB_MULTADD2 (Hx, pH+jj, aik, gkj, i, k, j1+jj) ; \
}
#else
#define GB_HX_COMPUTE(pH,i,gkj,gb,jj) \
{ \
GB_MULTADD2 (Hx, pH+jj, aik, gkj, i, k, j1+jj) ; \
}
#endif
#include "template/GB_AxB_saxpy4_panel.c"
#undef GB_HX_COMPUTE
//--------------------------------------------------------------
// C(:,j1:j2-1) = H
//--------------------------------------------------------------
if (np == 1)
{
// Hx is already aliased to Cx; no more work to do
continue ;
}
for (int64_t jj = 0 ; jj < np ; jj++)
{
//----------------------------------------------------------
// C(:,j) = H (:,jj)
//----------------------------------------------------------
int64_t j = j1 + jj ;
int64_t pC_start = j * cvlen ; // get pointer to C(:,j)
for (int64_t i = 0 ; i < cvlen ; i++)
{
int64_t pC = pC_start + i ; // pointer to C(i,j)
int64_t pH = i * np + jj ; // pointer to H(i,jj)
// C(i,j) = H(i,jj)
GB_CIJ_GATHER_UPDATE (pC, pH) ;
}
}
}
}
}
else if (use_atomics)
{
//----------------------------------------------------------------------
// C += A*B using fine tasks and atomics
//----------------------------------------------------------------------
// allocate workspace to implement the atomic update
#if !GB_Z_HAS_ATOMIC_UPDATE
int8_t *restrict Wf = NULL ; size_t Wf_size = 0 ;
Wf = GB_CALLOC_MEMORY (C->vlen * C->vdim, sizeof (int8_t), &Wf_size) ;
if (Wf == NULL)
{
return (GrB_OUT_OF_MEMORY) ;
}
#endif
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
//------------------------------------------------------------------
// determine the vector of B and C for this fine task
//------------------------------------------------------------------
// The fine task operates on C(:,j) and B(:,j). Its fine task
// id ranges from 0 to nfine_tasks_per_vector-1, and determines
// which slice of A to operate on.
int64_t j = tid / nfine_tasks_per_vector ;
int fine_tid = tid % nfine_tasks_per_vector ;
int64_t kfirst = A_slice [fine_tid] ;
int64_t klast = A_slice [fine_tid + 1] ;
int64_t pB_start = j * bvlen ; // pointer to B(:,j)
int64_t pC_start = j * cvlen ; // pointer to C(:,j)
GB_GET_T_FOR_SECONDJ ; // t = j or j+1 for SECONDJ*
// for Hx Gustavason workspace: use C(:,j) in-place:
GB_C_TYPE *restrict Hx = (GB_C_TYPE *)
(((GB_void *) Cx) + (pC_start * GB_C_SIZE)) ;
#if !GB_Z_HAS_ATOMIC_UPDATE
int8_t *restrict Hf = Wf + pC_start ;
#endif
#if GB_IS_PLUS_FC32_MONOID
float *restrict Hx_real = (float *) Hx ;
float *restrict Hx_imag = Hx_real + 1 ;
#elif GB_IS_PLUS_FC64_MONOID
double *restrict Hx_real = (double *) Hx ;
double *restrict Hx_imag = Hx_real + 1 ;
#endif
//------------------------------------------------------------------
// C(:,j) += A(:,k1:k2) * B(k1:k2,j)
//------------------------------------------------------------------
for (int64_t kk = kfirst ; kk < klast ; kk++)
{
//--------------------------------------------------------------
// C(:,j) += A(:,k) * B(k,j)
//--------------------------------------------------------------
int64_t k = GBh_A (Ah, kk) ; // k in range k1:k2
int64_t pB = pB_start + k ; // get pointer to B(k,j)
#if GB_B_IS_BITMAP
if (!GBb_B (Bb, pB)) continue ;
#endif
int64_t pA = GB_IGET (Ap, kk) ;
int64_t pA_end = GB_IGET (Ap, kk+1) ;
GB_GET_B_kj ; // bkj = B(k,j)
for ( ; pA < pA_end ; pA++)
{
//----------------------------------------------------------
// get A(i,k)
//----------------------------------------------------------
int64_t i = GB_IGET (Ai, pA) ; // get A(i,k) index
//----------------------------------------------------------
// C(i,j) += A(i,k) * B(k,j)
//----------------------------------------------------------
GB_MULT_A_ik_B_kj ; // t = A(i,k) * B(k,j)
#if GB_Z_HAS_ATOMIC_UPDATE
{
// the monoid has an atomic update
GB_Z_ATOMIC_UPDATE_HX (i, t) ; // C(i,j) += t
}
#else
{
// the update must be done in a critical section using
// the mutex byte Hf (i,j), located at Hf [i]. If
// zero, the mutex is unlocked.
int8_t f ;
do
{
// do this atomically:
// { f = Hf [i] ; Hf [i] = 1 ; }
GB_ATOMIC_CAPTURE_INT8 (f, Hf [i], 1) ;
}
while (f == 1) ;
GB_Z_ATOMIC_UPDATE_HX (i, t) ; // C(i,j) += t
GB_ATOMIC_WRITE
Hf [i] = 0 ;
}
#endif
}
}
}
// free workspace for atomic update
#if !GB_Z_HAS_ATOMIC_UPDATE
GB_FREE_MEMORY (&Wf, Wf_size) ;
#endif
}
else
{
//----------------------------------------------------------------------
// C += A*B using fine tasks and workspace, with no atomics
//----------------------------------------------------------------------
// Each fine task is given size-cvlen workspace to compute its result
// in the first phase, W(:,tid) = A(:,k1:k2) * B(k1:k2,j), where k1:k2
// is defined by the fine_tid of the task. The workspaces are then
// summed into C in the second phase.
//----------------------------------------------------------------------
// first phase: W (:,tid) = A (:,k1:k2) * B (k2:k2,j) for each fine task
//----------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
//------------------------------------------------------------------
// determine the vector of B and C for this fine task
//------------------------------------------------------------------
// The fine task operates on C(:,j) and B(:,j). Its fine task
// id ranges from 0 to nfine_tasks_per_vector-1, and determines
// which slice of A to operate on.
int64_t j = tid / nfine_tasks_per_vector ;
int fine_tid = tid % nfine_tasks_per_vector ;
int64_t kfirst = A_slice [fine_tid] ;
int64_t klast = A_slice [fine_tid + 1] ;
int64_t pB_start = j * bvlen ; // pointer to B(:,j)
int64_t pW_start = tid * cvlen ; // pointer to W for this thread
GB_GET_T_FOR_SECONDJ ; // t = j or j+1 for SECONDJ*
GB_C_TYPE *restrict Hx = (GB_C_TYPE *)
(Wcx + (pW_start * GB_C_SIZE)) ;
#if GB_IS_PLUS_FC32_MONOID
float *restrict Hx_real = (float *) Hx ;
float *restrict Hx_imag = Hx_real + 1 ;
#elif GB_IS_PLUS_FC64_MONOID
double *restrict Hx_real = (double *) Hx ;
double *restrict Hx_imag = Hx_real + 1 ;
#endif
//------------------------------------------------------------------
// clear the panel
//------------------------------------------------------------------
// Hx = identity
#if GB_HAS_IDENTITY_BYTE
{
memset (Hx, GB_IDENTITY_BYTE, cvlen * GB_C_SIZE) ;
}
#else
{
for (int64_t i = 0 ; i < cvlen ; i++)
{
GB_HX_WRITE (i, zidentity) ; // Hx(i) = identity
}
}
#endif
//------------------------------------------------------------------
// W = A(:,k1:k2) * B(k1:k2,j)
//------------------------------------------------------------------
for (int64_t kk = kfirst ; kk < klast ; kk++)
{
//--------------------------------------------------------------
// W(:,k) += A(:,k) * B(k,j)
//--------------------------------------------------------------
int64_t k = GBh_A (Ah, kk) ; // k in range k1:k2
int64_t pB = pB_start + k ; // get pointer to B(k,j)
#if GB_B_IS_BITMAP
if (!GBb_B (Bb, pB)) continue ;
#endif
int64_t pA = GB_IGET (Ap, kk) ;
int64_t pA_end = GB_IGET (Ap, kk+1) ;
GB_GET_B_kj ; // bkj = B(k,j)
for ( ; pA < pA_end ; pA++)
{
int64_t i = GB_IGET (Ai, pA) ; // get A(i,k) index
// W(i,k) += A(i,k) * B(k,j)
GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j)
GB_HX_UPDATE (i, t) ; // Hx(i) += t
}
}
}
//----------------------------------------------------------------------
// second phase: C += reduce (W)
//----------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
//------------------------------------------------------------------
// determine the W and C for this fine task
//------------------------------------------------------------------
// The fine task operates on C(i1:i2,j) and W(i1:i2,w1:w2), where
// i1:i2 is defined by the fine task id. Its fine task id ranges
// from 0 to nfine_tasks_per_vector-1.
// w1:w2 are the updates to C(:,j), where w1:w2 =
// [j*nfine_tasks_per_vector : (j+1)*nfine_tasks_per_vector-1].
int64_t j = tid / nfine_tasks_per_vector ;
int fine_tid = tid % nfine_tasks_per_vector ;
int64_t istart, iend ;
GB_PARTITION (istart, iend, cvlen, fine_tid,
nfine_tasks_per_vector) ;
int64_t pC_start = j * cvlen ; // pointer to C(:,j)
int64_t wstart = j * nfine_tasks_per_vector ;
int64_t wend = (j + 1) * nfine_tasks_per_vector ;
// Hx = (typecasted) Wcx workspace
GB_C_TYPE *restrict Hx = ((GB_C_TYPE *) Wcx) ;
#if GB_IS_PLUS_FC32_MONOID
float *restrict Hx_real = (float *) Hx ;
float *restrict Hx_imag = Hx_real + 1 ;
#elif GB_IS_PLUS_FC64_MONOID
double *restrict Hx_real = (double *) Hx ;
double *restrict Hx_imag = Hx_real + 1 ;
#endif
//------------------------------------------------------------------
// C(i1:i2,j) += reduce (W (i2:i2, wstart:wend))
//------------------------------------------------------------------
for (int64_t w = wstart ; w < wend ; w++)
{
//--------------------------------------------------------------
// C(i1:i2,j) += W (i1:i2,w)
//--------------------------------------------------------------
int64_t pW_start = w * cvlen ; // pointer to W (:,w)
for (int64_t i = istart ; i < iend ; i++)
{
int64_t pW = pW_start + i ; // pointer to W(i,w)
int64_t pC = pC_start + i ; // pointer to C(i,j)
// C(i,j) += W(i,w)
GB_CIJ_GATHER_UPDATE (pC, pW) ;
}
}
}
}
}
|