File: GB_reduce_to_scalar.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (450 lines) | stat: -rw-r--r-- 17,263 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//------------------------------------------------------------------------------
// GB_reduce_to_scalar: reduce a matrix to a scalar
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// c = accum (c, reduce_to_scalar(A)), reduce entries in a matrix to a scalar.
// Does the work for GrB_*_reduce_TYPE, both matrix and vector.

// This function does not need to know if A is hypersparse or not, and its
// result is the same if A is in CSR or CSC format.

// This function is the only place in all of GraphBLAS where the identity value
// of a monoid is required, but only in one special case: it is required to be
// the return value of c when A has no entries.  The identity value is also
// used internally, in the parallel methods below, to initialize a scalar value
// in each task.  The methods could be rewritten to avoid the use of the
// identity value.  Since this function requires it anyway, for the special
// case when nvals(A) is zero, the existence of the identity value makes the
// code a little simpler.

#include "reduce/GB_reduce.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_red__include.h"
#endif
#include "monoid/include/GB_monoid_shared_definitions.h"

#define GB_FREE_ALL                 \
{                                   \
    GB_WERK_POP (F, bool) ;         \
    GB_WERK_POP (W, GB_void) ;      \
}

GrB_Info GB_reduce_to_scalar    // z = reduce_to_scalar (A)
(
    void *c,                    // result scalar
    const GrB_Type ctype,       // the type of scalar, c
    const GrB_BinaryOp accum,   // for c = accum(c,z)
    const GrB_Monoid monoid,    // monoid to do the reduction
    const GrB_Matrix A,         // matrix to reduce
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GB_RETURN_IF_NULL_OR_FAULTY (monoid) ;
    GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
    GB_RETURN_IF_NULL (c) ;
    GB_WERK_DECLARE (W, GB_void) ;
    GB_WERK_DECLARE (F, bool) ;

    ASSERT_TYPE_OK (ctype, "type of scalar c", GB0) ;
    ASSERT_MONOID_OK (monoid, "monoid for reduce_to_scalar", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for reduce_to_scalar", GB0) ;
    ASSERT_MATRIX_OK (A, "A for reduce_to_scalar", GB0) ;

    // check domains and dimensions for c = accum (c,z)
    GrB_Type ztype = monoid->op->ztype ;
    GB_OK (GB_compatible (ctype, NULL, NULL, false, accum, ztype, Werk)) ;

    // z = monoid (z,A) must be compatible
    if (!GB_Type_compatible (A->type, ztype))
    { 
        return (GrB_DOMAIN_MISMATCH) ;
    }

    //--------------------------------------------------------------------------
    // assemble any pending tuples; zombies are OK
    //--------------------------------------------------------------------------

    GB_MATRIX_WAIT_IF_PENDING (A) ;
    GB_BURBLE_DENSE (A, "(A %s) ") ;

    ASSERT (GB_ZOMBIES_OK (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_PENDING (A)) ;

    //--------------------------------------------------------------------------
    // get A
    //--------------------------------------------------------------------------

    int64_t asize = A->type->size ;
    int64_t zsize = ztype->size ;
    int64_t anz = GB_nnz_held (A) ;
    ASSERT (anz >= A->nzombies) ;

    // z = identity
    GB_void z [GB_VLA(zsize)] ;
    memcpy (z, monoid->identity, zsize) ;   // required, if nnz(A) is zero

    //--------------------------------------------------------------------------
    // z = reduce_to_scalar (A) on the GPU(s) or CPU
    //--------------------------------------------------------------------------

    info = GrB_NO_VALUE ;

    #if defined ( GRAPHBLAS_HAS_CUDA )
    if (GB_cuda_reduce_to_scalar_branch (monoid, A))
    {

        //----------------------------------------------------------------------
        // via the CUDA kernel
        //----------------------------------------------------------------------

        GrB_Matrix V = NULL ;
        info = GB_cuda_reduce_to_scalar (z, &V, monoid, A) ;

        if (V != NULL)
        {
            // reduction must continue.  Result is in V, not the scalar z.
            ASSERT (info == GrB_SUCCESS) ;
            if (V->vlen == 1)
            {
                // the CUDA kernel has reduced A to a single scalar, V [0],
                // with a single threadblock; no more recursion.  Copy the
                // single scalar into z, for the accum phase below.
                memcpy (z, V->x, zsize) ;
                GB_Matrix_free (&V) ;
            }
            else
            {
                // the CUDA kernel has reduced A to an array V; keep going
                info = GB_reduce_to_scalar (c, ctype, accum, monoid, V, Werk) ;
                GB_Matrix_free (&V) ;
                return (info) ;
            }
        }

        // GB_cuda_reduce_to_scalar may refuse to do the reduction and
        // indicate this by returning GrB_NO_VALUE.  If so, the CPU will do it
        // below.
        if (!(info == GrB_SUCCESS || info == GrB_NO_VALUE))
        {
            // GB_cuda_reduce_to_scalar has returned an error
            // (out of memory, or other error)
            return (info) ;
        }

    }
    #endif

    if (info == GrB_NO_VALUE)
    {

        //----------------------------------------------------------------------
        // use OpenMP on the CPU threads
        //----------------------------------------------------------------------

        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        int nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
        int ntasks = (nthreads == 1) ? 1 : (64 * nthreads) ;
        ntasks = GB_IMIN (ntasks, anz) ;
        ntasks = GB_IMAX (ntasks, 1) ;

        //----------------------------------------------------------------------
        // allocate workspace
        //----------------------------------------------------------------------

        GB_WERK_PUSH (W, ntasks * zsize, GB_void) ;
        GB_WERK_PUSH (F, ntasks, bool) ;
        if (W == NULL || F == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // z = reduce_to_scalar (A)
        //----------------------------------------------------------------------

        // get terminal value, if any
        GB_void *restrict zterminal = (GB_void *) monoid->terminal ;

        if (anz == A->nzombies)
        { 

            //------------------------------------------------------------------
            // no live entries in A; nothing to do
            //------------------------------------------------------------------

            info = GrB_SUCCESS ;

        }
        else if (A->iso)
        { 

            //------------------------------------------------------------------
            // via the iso kernel
            //------------------------------------------------------------------

            // this takes at most O(log(nvals(A))) time, for any monoid
            GB_reduce_to_scalar_iso (z, monoid, A) ;
            info = GrB_SUCCESS ;

        }
        else if (A->type == ztype)
        { 

            //------------------------------------------------------------------
            // via the factory kernel
            //------------------------------------------------------------------

            #ifndef GBCOMPACT
            GB_IF_FACTORY_KERNELS_ENABLED
            { 

                //--------------------------------------------------------------
                // define the worker for the switch factory
                //--------------------------------------------------------------

                #define GB_red(opname,aname) \
                    GB (_red_ ## opname ## aname)

                #define GB_RED_WORKER(opname,aname,ztype)                   \
                {                                                           \
                    info = GB_red (opname, aname) ((ztype *) z, A, W, F,    \
                        ntasks, nthreads) ;                                 \
                }                                                           \
                break ;

                //--------------------------------------------------------------
                // launch the switch factory
                //--------------------------------------------------------------

                // controlled by opcode and typecode
                GB_Opcode opcode = monoid->op->opcode ;
                GB_Type_code typecode = A->type->code ;
                ASSERT (typecode <= GB_UDT_code) ;

                #include "reduce/factory/GB_red_factory.c"
            }
            #endif
        }

        //----------------------------------------------------------------------
        // via the JIT or PreJIT kernel
        //----------------------------------------------------------------------

        if (info == GrB_NO_VALUE)
        { 
            info = GB_reduce_to_scalar_jit (z, monoid, A, W, F, ntasks,
                nthreads) ;
        }

        //----------------------------------------------------------------------
        // via the generic kernel
        //----------------------------------------------------------------------

        if (info == GrB_NO_VALUE)
        {

            //------------------------------------------------------------------
            // generic worker
            //------------------------------------------------------------------

            #include "generic/GB_generic.h"

            GxB_binary_function freduce = monoid->op->binop_function ;
            ASSERT (freduce != NULL) ;

            // ztype z = identity
            #define GB_DECLARE_IDENTITY(z)                          \
                GB_void z [GB_VLA(zsize)] ;                         \
                memcpy (z, monoid->identity, zsize) ;

            // const zidentity = identity
            #define GB_DECLARE_IDENTITY_CONST(z)                    \
                const GB_void *z = monoid->identity ;

            #define GB_A_TYPE GB_void

            // no panel used
            #define GB_PANEL 1
            #define GB_NO_PANEL_CASE

            // W [k] = z, no typecast
            #define GB_COPY_SCALAR_TO_ARRAY(W, k, z)                \
                memcpy (W +(k*zsize), z, zsize)

            // z += W [k], no typecast
            #define GB_ADD_ARRAY_TO_SCALAR(z,W,k)                   \
                freduce (z, z, W +((k)*zsize))

            if (A->type == ztype)
            {

                //--------------------------------------------------------------
                // generic worker: sum up the entries, no typecasting
                //--------------------------------------------------------------

                GB_BURBLE_MATRIX (A, "(generic reduce to scalar: %s) ",
                    monoid->op->name) ;

                // the switch factory didn't handle this case

                // t += (ztype) Ax [p], but no typecasting needed
                #define GB_GETA_AND_UPDATE(t,Ax,p)                      \
                    freduce (t, t, Ax +((p)*zsize))

                if (zterminal == NULL)
                { 
                    // monoid is not terminal
                    #undef  GB_MONOID_IS_TERMINAL
                    #define GB_MONOID_IS_TERMINAL 0
                    #undef  GB_TERMINAL_CONDITION
                    #define GB_TERMINAL_CONDITION(z,zterminal) 0
                    #undef  GB_IF_TERMINAL_BREAK
                    #define GB_IF_TERMINAL_BREAK(z,zterminal)
                    #include "reduce/template/GB_reduce_to_scalar_template.c"
                }
                else
                { 
                    // break if terminal value reached
                    #undef  GB_MONOID_IS_TERMINAL
                    #define GB_MONOID_IS_TERMINAL 1
                    #undef  GB_TERMINAL_CONDITION
                    #define GB_TERMINAL_CONDITION(z,zterminal)  \
                            (memcmp (z, zterminal, zsize) == 0)
                    #undef  GB_IF_TERMINAL_BREAK
                    #define GB_IF_TERMINAL_BREAK(z,zterminal)   \
                            if (GB_TERMINAL_CONDITION (z, zterminal)) break
                    #include "reduce/template/GB_reduce_to_scalar_template.c"
                }

            }
            else
            {

                //--------------------------------------------------------------
                // generic worker: sum up the entries, with typecasting
                //--------------------------------------------------------------

                GB_BURBLE_MATRIX (A, "(generic reduce to scalar, with typecast:"
                    " %s) ", monoid->op->name) ;

                GB_cast_function
                    cast_A_to_Z = GB_cast_factory (ztype->code, A->type->code) ;

                // t += (ztype) Ax [p], with typecast
                #undef  GB_GETA_AND_UPDATE
                #define GB_GETA_AND_UPDATE(t,Ax,p)                      \
                    GB_void awork [GB_VLA(zsize)] ;                     \
                    cast_A_to_Z (awork, Ax +((p)*asize), asize) ;       \
                    freduce (t, t, awork)

                if (zterminal == NULL)
                { 
                    // monoid is not terminal
                    #undef  GB_MONOID_IS_TERMINAL
                    #define GB_MONOID_IS_TERMINAL 0
                    #undef  GB_TERMINAL_CONDITION
                    #undef  GB_DECLARE_TERMINAL_CONST
                    #define GB_DECLARE_TERMINAL_CONST
                    #define GB_TERMINAL_CONDITION(z,zterminal) 0
                    #undef  GB_IF_TERMINAL_BREAK
                    #define GB_IF_TERMINAL_BREAK
                    #include "reduce/template/GB_reduce_to_scalar_template.c"
                }
                else
                { 
                    // break if terminal value reached
                    #undef  GB_MONOID_IS_TERMINAL
                    #define GB_MONOID_IS_TERMINAL 1
                    #undef  GB_TERMINAL_CONDITION
                    // const zterminal = terminal_value
                    #undef  GB_DECLARE_TERMINAL_CONST
                    #define GB_DECLARE_TERMINAL_CONST(zterminal)            \
                            const GB_void *zterminal = monoid->terminal ;
                    #define GB_TERMINAL_CONDITION(z,zterminal)  \
                            (memcmp (z, zterminal, zsize) == 0)
                    #undef  GB_IF_TERMINAL_BREAK
                    #define GB_IF_TERMINAL_BREAK(z,zterminal)   \
                            if (GB_TERMINAL_CONDITION (z, zterminal)) break
                    #include "reduce/template/GB_reduce_to_scalar_template.c"
                }
            }
            info = GrB_SUCCESS ;
        }
    }

    if (info != GrB_SUCCESS)
    { 
        // out of memory, or other error
        GB_FREE_ALL ;
        return (info) ;
    }

    //--------------------------------------------------------------------------
    // c = z or c = accum (c,z)
    //--------------------------------------------------------------------------

    // This operation does not use GB_accum_mask, since c and z are
    // scalars, not matrices.  There is no scalar mask.

    if (accum == NULL)
    { 
        // c = (ctype) z
        GB_cast_function
            cast_Z_to_C = GB_cast_factory (ctype->code, ztype->code) ;
        cast_Z_to_C (c, z, ctype->size) ;
    }
    else
    { 
        GxB_binary_function faccum = accum->binop_function ;
        ASSERT (faccum != NULL) ;

        GB_cast_function cast_C_to_xaccum, cast_Z_to_yaccum, cast_zaccum_to_C ;
        cast_C_to_xaccum = GB_cast_factory (accum->xtype->code, ctype->code) ;
        cast_Z_to_yaccum = GB_cast_factory (accum->ytype->code, ztype->code) ;
        cast_zaccum_to_C = GB_cast_factory (ctype->code, accum->ztype->code) ;

        // scalar workspace
        GB_void xaccum [GB_VLA(accum->xtype->size)] ;
        GB_void yaccum [GB_VLA(accum->ytype->size)] ;
        GB_void zaccum [GB_VLA(accum->ztype->size)] ;

        // xaccum = (accum->xtype) c
        cast_C_to_xaccum (xaccum, c, ctype->size) ;

        // yaccum = (accum->ytype) z
        cast_Z_to_yaccum (yaccum, z, zsize) ;

        // zaccum = xaccum "+" yaccum
        faccum (zaccum, xaccum, yaccum) ;

        // c = (ctype) zaccum
        cast_zaccum_to_C (c, zaccum, ctype->size) ;
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_ALL ;
    #pragma omp flush
    return (GrB_SUCCESS) ;
}