1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
//------------------------------------------------------------------------------
// GB_reduce_to_vector: reduce a matrix to a vector using a monoid
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M> = accum (C,reduce(A)) where C is n-by-1. Reduces a matrix A or A'
// to a vector.
#define GB_FREE_ALL \
{ \
GB_Matrix_free (&B) ; \
GrB_Semiring_free (&semiring) ; \
}
#include "reduce/GB_reduce.h"
#include "binaryop/GB_binop.h"
#include "mxm/GB_mxm.h"
#include "mask/GB_get_mask.h"
#include "semiring/GB_Semiring_new.h"
GrB_Info GB_reduce_to_vector // C<M> = accum (C,reduce(A))
(
GrB_Matrix C, // input/output for results, size n-by-1
const GrB_Matrix M_in, // optional M for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C,T)
const GrB_Monoid monoid, // reduce monoid for T=reduce(A)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc, // descriptor for C, M, and A
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
GB_RETURN_IF_FAULTY (desc) ;
struct GB_Matrix_opaque B_header ;
GrB_Matrix B = NULL ;
struct GB_Semiring_opaque semiring_header ;
GrB_Semiring semiring = NULL ;
ASSERT_MATRIX_OK (C, "C input for reduce-to-vector", GB0) ;
ASSERT_MATRIX_OK_OR_NULL (M_in, "M_in for reduce-to-vector", GB0) ;
ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for reduce-to-vector", GB0) ;
ASSERT_MONOID_OK (monoid, "monoid for reduce-to-vector", GB0) ;
ASSERT_MATRIX_OK (A, "A input for reduce-to-vector", GB0) ;
ASSERT_DESCRIPTOR_OK_OR_NULL (desc, "desc for reduce-to-vector", GB0) ;
ASSERT (GB_VECTOR_OK (C)) ;
ASSERT (GB_IMPLIES (M_in != NULL, GB_VECTOR_OK (M_in))) ;
// get the descriptor
GrB_Info info ;
GB_GET_DESCRIPTOR (info, desc, C_replace, Mask_comp, Mask_struct,
A_transpose, xx1, xx2, do_sort) ;
// get the mask
GrB_Matrix M = GB_get_mask (M_in, &Mask_comp, &Mask_struct) ;
// check domains and dimensions for C<M> = accum (C,T)
GrB_Type ztype = monoid->op->ztype ;
GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, ztype, Werk)) ;
// T = reduce (T,A) must be compatible
if (!GB_Type_compatible (A->type, ztype))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for reduction monoid z=%s(x,y):\n"
"input matrix A of type [%s]\n"
"cannot be typecast to reduction monoid of type [%s]",
monoid->op->name, A->type->name, ztype->name) ;
}
// check the dimensions
int64_t n = GB_NROWS (C) ;
if (A_transpose)
{
if (n != GB_NCOLS (A))
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"w=reduce(A'): length of w is " GBd ";\n"
"it must match the number of columns of A, which is " GBd ".",
n, GB_NCOLS (A)) ;
}
}
else
{
if (n != GB_NROWS(A))
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"w=reduce(A): length of w is " GBd ";\n"
"it must match the number of rows of A, which is " GBd ".",
n, GB_NROWS (A)) ;
}
}
// quick return if an empty mask is complemented
GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;
//--------------------------------------------------------------------------
// create B as full iso vector
//--------------------------------------------------------------------------
// B is constructed with a static header in O(1) time and space, even
// though it is m-by-1. It contains no dynamically-allocated content and
// does not need to be freed.
int64_t m = A_transpose ? GB_NROWS (A) : GB_NCOLS (A) ;
GB_CLEAR_MATRIX_HEADER (B, &B_header) ;
info = GB_new (&B, // full, existing header
ztype, m, 1, GB_ph_null, true, GxB_FULL, GB_NEVER_HYPER, 1,
/* OK: */ false, false, false) ;
ASSERT (info == GrB_SUCCESS) ;
B->magic = GB_MAGIC ;
B->iso = true ;
size_t zsize = ztype->size ;
GB_void bscalar [GB_VLA(zsize)] ;
memset (bscalar, 0, zsize) ;
B->x = bscalar ;
B->x_shallow = true ;
B->x_size = zsize ;
ASSERT_MATRIX_OK (B, "B for reduce-to-vector", GB0) ;
//--------------------------------------------------------------------------
// create the FIRST_ZTYPE binary operator
//--------------------------------------------------------------------------
struct GB_BinaryOp_opaque op_header ;
GrB_BinaryOp op ;
switch (ztype->code)
{
case GB_BOOL_code : op = GrB_FIRST_BOOL ; break ;
case GB_INT8_code : op = GrB_FIRST_INT8 ; break ;
case GB_INT16_code : op = GrB_FIRST_INT16 ; break ;
case GB_INT32_code : op = GrB_FIRST_INT32 ; break ;
case GB_INT64_code : op = GrB_FIRST_INT64 ; break ;
case GB_UINT8_code : op = GrB_FIRST_UINT8 ; break ;
case GB_UINT16_code : op = GrB_FIRST_UINT16 ; break ;
case GB_UINT32_code : op = GrB_FIRST_UINT32 ; break ;
case GB_UINT64_code : op = GrB_FIRST_UINT64 ; break ;
case GB_FP32_code : op = GrB_FIRST_FP32 ; break ;
case GB_FP64_code : op = GrB_FIRST_FP64 ; break ;
case GB_FC32_code : op = GxB_FIRST_FC32 ; break ;
case GB_FC64_code : op = GxB_FIRST_FC64 ; break ;
default :
// Create a FIRST_UDT binary operator. The function pointer for
// the FIRST_UDT op is NULL; it is not needed by FIRST. The
// function defn is also NULL. In the JIT, the FIRST multiply
// operator is a simple assignment so there's no need for a
// function definition. This binary op will not be treated as a
// builtin operator, however, since its data type is not builtin.
// Its hash, op->hash, will be nonzero. The name of FIRST_UDT is
// just "1st", which is not itself unique, but it will only be used
// in combination with the monoid, which must be user-defined. No
// typecasting is allowed between user-defined types, so the
// user-defined monoid must be specific this particular
// user-defined type and this "reduce_1st" will be a unique name
// for the constructed semiring (if "reduce" is the name of the
// monoid). In addition, it is not possible for the user to create
// a jitifyable operator with the name "1st", because of the
// leading "1" character in its name. So "reduce_1st" must be
// unique.
op = &op_header ;
op->header_size = 0 ;
info = GB_binop_new (op, NULL, // op->binop_func. NULL for FIRST_UDT
ztype, ztype, ztype, // ztype is user-defined
"1st", // a simple name for FIRST_UDT
NULL, // no op->defn for the FIRST_UDT operator
GB_FIRST_binop_code) ; // using a built-in opcode
break ;
}
// GB_binop_new cannot fail since it doesn't allocate the function defn.
ASSERT (info == GrB_SUCCESS) ;
ASSERT_BINARYOP_OK (op, "op for reduce-to-vector", GB0) ;
//--------------------------------------------------------------------------
// create the REDUCE_FIRST_ZTYPE semiring
//--------------------------------------------------------------------------
semiring = &semiring_header ;
semiring->header_size = 0 ;
info = GB_Semiring_new (semiring, monoid, op) ;
if (info != GrB_SUCCESS)
{
// out of memory
// GB_Semiring_new allocates semiring->name if it uses the FIRST_UDT
// operator created above, so it can run out of memory in that case.
GB_FREE_ALL ;
return (info) ;
}
ASSERT_SEMIRING_OK (semiring, "semiring for reduce-to-vector", GB0) ;
if (GB_Global_burble_get ( ))
{
GB_Semiring_check (semiring, "semiring for reduce-to-vector", 3, NULL) ;
}
//--------------------------------------------------------------------------
// reduce the matrix to a vector via C<M> = accum (C, A*B)
//--------------------------------------------------------------------------
info = GB_mxm (C, C_replace, M, Mask_comp, Mask_struct, accum,
semiring, A, A_transpose, B, false, false, GxB_DEFAULT, do_sort, Werk) ;
GB_FREE_ALL ;
return (info) ;
}
|