File: GB_resize.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (337 lines) | stat: -rw-r--r-- 12,917 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//------------------------------------------------------------------------------
// GB_resize: change the size of a matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "select/GB_select.h"
#include "scalar/GB_Scalar_wrap.h"
#include "resize/GB_resize.h"

#define GB_FREE_ALL                         \
{                                           \
    GB_Matrix_free (&T) ;                   \
    GB_FREE_MEMORY (&Ax_new, Ax_new_size) ; \
    GB_FREE_MEMORY (&Ab_new, Ab_new_size) ; \
    GB_phybix_free (A) ;                    \
}

//------------------------------------------------------------------------------
// GB_resize: resize a GrB_Matrix
//------------------------------------------------------------------------------

GrB_Info GB_resize              // change the size of a matrix
(
    GrB_Matrix A,               // matrix to modify
    const uint64_t nrows_new,   // new number of rows in matrix
    const uint64_t ncols_new,   // new number of columns in matrix
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GB_void *restrict Ax_new = NULL ; size_t Ax_new_size = 0 ;
    int8_t  *restrict Ab_new = NULL ; size_t Ab_new_size = 0 ;
    ASSERT_MATRIX_OK (A, "A to resize", GB0) ;

    struct GB_Matrix_opaque T_header ;
    GrB_Matrix T = NULL ;

    //--------------------------------------------------------------------------
    // handle the CSR/CSC format
    //--------------------------------------------------------------------------

    int64_t vdim_old = A->vdim ;
    int64_t vlen_old = A->vlen ;
    int64_t vlen_new, vdim_new ;
    if (A->is_csc)
    { 
        vlen_new = nrows_new ;
        vdim_new = ncols_new ;
    }
    else
    { 
        vlen_new = ncols_new ;
        vdim_new = nrows_new ;
    }

    if (vdim_new == vdim_old && vlen_new == vlen_old)
    { 
        // nothing to do
        return (GrB_SUCCESS) ;
    }

    //--------------------------------------------------------------------------
    // delete any lingering zombies and assemble any pending tuples
    //--------------------------------------------------------------------------

    GB_MATRIX_WAIT (A) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT_MATRIX_OK (A, "Final A to resize", GB0) ;

    //--------------------------------------------------------------------------
    // resize the matrix
    //--------------------------------------------------------------------------

    const bool A_is_bitmap = GB_IS_BITMAP (A) ;
    const bool A_is_full = GB_IS_FULL (A) ;
    const bool A_is_shrinking = (vdim_new <= vdim_old && vlen_new <= vlen_old) ;

    if ((A_is_full || A_is_bitmap) && A_is_shrinking)
    {

        //----------------------------------------------------------------------
        // A is full or bitmap
        //----------------------------------------------------------------------

        // get the old and new dimensions
        int64_t anz_new = 1 ;
        bool ok = GB_int64_multiply ((uint64_t *) (&anz_new),
            vlen_new, vdim_new) ;
        if (!ok) anz_new = 1 ;
        size_t nzmax_new = GB_IMAX (anz_new, 1) ;
        bool in_place = A_is_full && (vlen_new == vlen_old || vdim_new <= 1) ;
        size_t asize = A->type->size ;
        const bool A_iso = A->iso ;

        //----------------------------------------------------------------------
        // allocate or reallocate A->x, unless A is iso
        //----------------------------------------------------------------------

        ok = true ;
        if (!A_iso)
        {
            if (in_place)
            { 
                // reallocate A->x in-place; no data movement needed
                GB_REALLOC_MEMORY (A->x, nzmax_new, asize, &(A->x_size), &ok) ;
            }
            else
            { 
                // allocate new space for A->x; use calloc to ensure all space
                // is initialized.
                Ax_new = GB_CALLOC_MEMORY (nzmax_new, asize, &Ax_new_size) ;
                ok = (Ax_new != NULL) ;
            }
        }

        //----------------------------------------------------------------------
        // allocate or reallocate A->b
        //----------------------------------------------------------------------

        if (!in_place && A_is_bitmap)
        { 
            // allocate new space for A->b
            Ab_new = GB_MALLOC_MEMORY (nzmax_new, sizeof (int8_t),
                &Ab_new_size) ;
            ok = ok && (Ab_new != NULL) ;
        }

        if (!ok)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // move data if not in-place
        //----------------------------------------------------------------------

        if (!in_place)
        {

            //------------------------------------------------------------------
            // determine number of threads to use
            //------------------------------------------------------------------

            int nthreads_max = GB_Context_nthreads_max ( ) ;
            double chunk = GB_Context_chunk ( ) ;
            int nthreads = GB_nthreads (anz_new, chunk, nthreads_max) ;

            //------------------------------------------------------------------
            // resize Ax, unless A is iso
            //------------------------------------------------------------------
        
            if (!A_iso)
            {
                GB_void *restrict Ax_old = (GB_void *) A->x ;

                int64_t j ;
                if (vdim_new <= 4*nthreads)
                {
                    // use all threads for each vector
                    for (j = 0 ; j < vdim_new ; j++)
                    { 
                        GB_void *pdest = Ax_new + j * vlen_new * asize ;
                        GB_void *psrc  = Ax_old + j * vlen_old * asize ;
                        GB_memcpy (pdest, psrc, vlen_new * asize, nthreads) ;
                    }
                }
                else
                {
                    // use a single thread for each vector
                    #pragma omp parallel for num_threads(nthreads) \
                        schedule(static)
                    for (j = 0 ; j < vdim_new ; j++)
                    { 
                        GB_void *pdest = Ax_new + j * vlen_new * asize ;
                        GB_void *psrc  = Ax_old + j * vlen_old * asize ;
                        memcpy (pdest, psrc, vlen_new * asize) ;
                    }
                }
                GB_FREE_MEMORY (&Ax_old, A->x_size) ;
                A->x = Ax_new ; A->x_size = Ax_new_size ;
                Ax_new = NULL ;
            }

            //------------------------------------------------------------------
            // resize Ab if A is bitmap, and count the # of entries
            //------------------------------------------------------------------

            if (A_is_bitmap)
            {
                int8_t *restrict Ab_old = A->b ;
                int64_t pnew ;
                int64_t anvals = 0 ;
                #pragma omp parallel for num_threads(nthreads) \
                    schedule(static) reduction(+:anvals)
                for (pnew = 0 ; pnew < anz_new ; pnew++)
                { 
                    int64_t i = pnew % vlen_new ;
                    int64_t j = pnew / vlen_new ;
                    int64_t pold = i + j * vlen_old ;
                    int8_t ab = Ab_old [pold] ;
                    Ab_new [pnew] = ab ;
                    anvals += ab ;
                }
                A->nvals = anvals ;
                GB_FREE_MEMORY (&Ab_old, A->b_size) ;
                A->b = Ab_new ; A->b_size = Ab_new_size ;
                Ab_new = NULL ;
            }
        }

        //----------------------------------------------------------------------
        // adjust dimensions and return result
        //----------------------------------------------------------------------

        A->vdim = vdim_new ;
        A->vlen = vlen_new ;
        A->nvec = vdim_new ;
//      A->nvec_nonempty = (vlen_new == 0) ? 0 : vdim_new ;
        GB_nvec_nonempty_set (A, (vlen_new == 0) ? 0 : vdim_new) ;

    }
    else
    {

        //----------------------------------------------------------------------
        // convert A to hypersparse and resize it
        //----------------------------------------------------------------------

        // convert to hypersparse
        GB_OK (GB_convert_any_to_hyper (A, Werk)) ;
        ASSERT (GB_IS_HYPERSPARSE (A)) ;
        ASSERT_MATRIX_OK (A, "A converted to hyper", GB0) ;

        // A->Y will be invalidated, so free it
        GB_hyper_hash_free (A) ;

        // resize the number of sparse vectors
        GB_Ap_DECLARE (Ap, ) ; GB_Ap_PTR (Ap, A) ;
        if (vdim_new < vdim_old)
        { 
            // descrease A->nvec to delete the vectors outside the range
            // 0...vdim_new-1.
            int64_t pleft = 0 ;
            int64_t pright = GB_IMIN (A->nvec, vdim_new) - 1 ;
            GB_split_binary_search (vdim_new, A->h, A->j_is_32,
                &pleft, &pright) ;
            A->nvec = pleft ;
            A->nvals = GB_IGET (Ap, A->nvec) ;

            // number of vectors is decreasing, need to count the new number of
            // non-empty vectors: done during pruning or by selector, below.
            GB_nvec_nonempty_set (A, -1) ;     // recomputed just below
        }

        if (vdim_new < A->plen)
        { 
            // reduce the size of A->p and A->h; this cannot fail
            info = GB_hyper_realloc (A, vdim_new, Werk) ;
            ASSERT (info == GrB_SUCCESS) ;
        }

        ASSERT_MATRIX_OK (A, "A, hyperlist trimmed", GB0) ;

        //----------------------------------------------------------------------
        // resize the length of each vector
        //----------------------------------------------------------------------

        // if vlen is shrinking, delete entries outside the new matrix
        if (vlen_new < vlen_old)
        { 
            // A = select (A), keeping entries in rows <= vlen_new-1
            struct GB_Scalar_opaque scalar_header ;
            int64_t k = vlen_new - 1 ;
            GrB_Scalar scalar = GB_Scalar_wrap (&scalar_header, GrB_INT64, &k) ;
            GB_CLEAR_MATRIX_HEADER (T, &T_header) ;
            GB_OK (GB_selector (T, GrB_ROWLE, false, A, scalar, Werk)) ;
            GB_OK (GB_transplant (A, A->type, &T, Werk)) ;
        }

        ASSERT_MATRIX_OK (A, "A rows pruned", GB0) ;
        GB_OK (GB_hyper_prune (A, Werk)) ;

        //----------------------------------------------------------------------
        // resize the matrix and the integers are valid for the new dimensions
        //----------------------------------------------------------------------

        ASSERT_MATRIX_OK (A, "A just before resize vlen, vdim", GB0) ;

        A->vdim = vdim_new ;
        A->vlen = vlen_new ;

        // At this point, the dimesions just have been changed but the integers
        // of Ap, Ah, and Ai have not.  The integer sizes may be temporarily
        // invalid.  They will be valid after the call to GB_convert_int below.

        bool Ap_is_32_new, Aj_is_32_new, Ai_is_32_new ;
        GB_determine_pji_is_32 (&Ap_is_32_new, &Aj_is_32_new, &Ai_is_32_new,
            GB_sparsity (A), A->nvals, A->vlen, A->vdim, Werk) ;

        if (Ap_is_32_new != A->p_is_32 ||
            Aj_is_32_new != A->j_is_32 ||
            Ai_is_32_new != A->i_is_32)
        {
            // The matrix integers need to change.  Do not validate the input
            // matrix or the new settings since the existing dimensions may not
            // be suitable with the existing integer sizes.  They will be valid
            // once the integer conversion is done.
            GB_OK (GB_convert_int (A, Ap_is_32_new, Aj_is_32_new, Ai_is_32_new,
                false)) ;
        }

        // The matrix and its integer sizes should now be valid.
        ASSERT_MATRIX_OK (A, "A integers converted", GB0) ;
    }

    //--------------------------------------------------------------------------
    // conform the matrix to its desired sparsity structure
    //--------------------------------------------------------------------------

    GB_OK (GB_conform (A, Werk)) ;
    ASSERT_MATRIX_OK (A, "A final resized", GB0) ;
    return (GrB_SUCCESS) ;
}