File: GB_select_column.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (373 lines) | stat: -rw-r--r-- 12,370 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//------------------------------------------------------------------------------
// GB_select_column: apply a select COL* operator
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// The column selectors can be done in a single pass.
// C->iso and A->iso are identical.

#include "select/GB_select.h"
#include "transpose/GB_transpose.h"
#include "jitifyer/GB_stringify.h"

#define GB_FREE_ALL                         \
{                                           \
    GB_phybix_free (C) ;                    \
}

GrB_Info GB_select_column
(
    GrB_Matrix C,
    const GrB_IndexUnaryOp op,
    GrB_Matrix A,
    int64_t ithunk,
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT_INDEXUNARYOP_OK (op, "idxunop for GB_select_column", GB0) ;
    ASSERT_MATRIX_OK (A, "A for select column", GB0_Z) ;
    GB_Opcode opcode = op->opcode ;
    ASSERT (opcode == GB_COLINDEX_idxunop_code ||
            opcode == GB_COLLE_idxunop_code ||
            opcode == GB_COLGT_idxunop_code) ;
    ASSERT (!GB_IS_BITMAP (A)) ;
    ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;

    //--------------------------------------------------------------------------
    // get A
    //--------------------------------------------------------------------------

    GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
    GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
    GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;

    const GB_void *restrict Ax = (GB_void *) A->x ;
    int64_t anvec = A->nvec ;
    bool A_jumbled = A->jumbled ;
    bool A_is_hyper = (Ah != NULL) ;
    int64_t avlen = A->vlen ;
    int64_t avdim = A->vdim ;
    const bool A_iso = A->iso ;
    const size_t asize = A->type->size ;

    GB_Type_code Ap_code = A->p_is_32 ? GB_UINT32_code : GB_UINT64_code ;
    GB_Type_code Ah_code = A->j_is_32 ? GB_UINT32_code : GB_UINT64_code ;
    GB_Type_code Ai_code = A->i_is_32 ? GB_INT32_code  : GB_INT64_code ;

    //--------------------------------------------------------------------------
    // determine number of threads to use
    //--------------------------------------------------------------------------

    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;
    int nth = nthreads_max ;

    //--------------------------------------------------------------------------
    // find column j in A
    //--------------------------------------------------------------------------

    int64_t j = (opcode == GB_COLINDEX_idxunop_code) ? (-ithunk) : ithunk ;

    int64_t k = 0 ;
    bool found ;
    if (j < 0)
    { 
        // j is outside the range of columns of A
        k = 0 ;
        found = false ;
    }
    else if (j >= avdim)
    { 
        // j is outside the range of columns of A
        k = anvec ;
        found = false ;
    }
    else if (A_is_hyper)
    { 
        // find the column j in the hyperlist of A
        // future:: use hyper_hash if present
        int64_t kright = anvec-1 ;
        found = GB_split_binary_search (j, Ah, A->j_is_32, &k, &kright) ;
        // if found is true the Ah [k] == j
        // if found is false, then Ah [0..k-1] < j and Ah [k..anvec-1] > j
    }
    else
    { 
        // j appears as the jth column in A; found is always true
        k = j ;
        found = true ;
    }

    //--------------------------------------------------------------------------
    // determine the # of entries and # of vectors in C
    //--------------------------------------------------------------------------

    int64_t pstart = GB_IGET (Ap, k) ;
    int64_t pend = found ? GB_IGET (Ap, k+1) : pstart ;
    int64_t ajnz = pend - pstart ;
    int64_t cnz, cnvec ;
    int64_t anz = A->nvals ;
    ASSERT (A->nvals == GB_IGET (Ap, anvec)) ;

    if (opcode == GB_COLINDEX_idxunop_code)
    { 
        // COLINDEX: delete column j:  C = A (:, [0:j-1 j+1:end])
        cnz = anz - ajnz ;
        cnvec = (A_is_hyper && found) ? (anvec-1) : anvec ;
    }
    else if (opcode == GB_COLLE_idxunop_code)
    { 
        // COLLE: C = A (:, 0:j)
        cnz = pend ;
        cnvec = (A_is_hyper) ? (found ? (k+1) : k) : anvec ;
    }
    else // (opcode == GB_COLGT_idxunop_code)
    { 
        // COLGT: C = A (:, j+1:end)
        cnz = anz - pend ;
        cnvec = anvec - ((A_is_hyper) ? (found ? (k+1) : k) : 0) ;
    }

    // determine the p_is_32, j_is_32, and i_is_32 settings for the new matrix
    bool Cp_is_32, Cj_is_32, Ci_is_32 ;
    GB_determine_pji_is_32 (&Cp_is_32, &Cj_is_32, &Ci_is_32,
        GxB_AUTO_SPARSITY, cnz, avlen, avdim, Werk) ;

    if (cnz == anz)
    { 
        // C is the same as A: return it a pure shallow copy
        return (GB_shallow_copy (C, true, A, Werk)) ;
    }
    else if (cnz == 0)
    { 
        // return C as empty
        return (GB_new (&C, // auto (sparse or hyper), existing header
            A->type, avlen, avdim, GB_ph_calloc, true,
            GxB_AUTO_SPARSITY, GB_Global_hyper_switch_get ( ), 1,
            Cp_is_32, Cj_is_32, Ci_is_32)) ;
    }

    //--------------------------------------------------------------------------
    // allocate C
    //--------------------------------------------------------------------------

    int csparsity = (A_is_hyper) ? GxB_HYPERSPARSE : GxB_SPARSE ;
    GB_OK (GB_new_bix (&C, // sparse or hyper (from A), existing header
        A->type, avlen, avdim, GB_ph_malloc, true, csparsity, false,
        A->hyper_switch, cnvec, cnz, true, A_iso,
        Cp_is_32, Cj_is_32, Ci_is_32)) ;

    ASSERT (Cp_is_32 == C->p_is_32) ;
    ASSERT (Cj_is_32 == C->j_is_32) ;
    ASSERT (Ci_is_32 == C->i_is_32) ;

    Cp_is_32 = C->p_is_32 ;
    Cj_is_32 = C->j_is_32 ;
    Ci_is_32 = C->i_is_32 ;

    ASSERT (info == GrB_SUCCESS) ;
    int nth2 = GB_nthreads (cnvec, chunk, nth) ;

    GB_Cp_DECLARE (Cp, ) ; GB_Cp_PTR (Cp, C) ;
    GB_Ch_DECLARE (Ch, ) ; GB_Ch_PTR (Ch, C) ;
    GB_Ci_DECLARE (Ci, ) ; GB_Ci_PTR (Ci, C) ;

    GB_Type_code Cp_code = Cp_is_32 ? GB_UINT32_code : GB_UINT64_code ;
    GB_Type_code Ch_code = Cj_is_32 ? GB_UINT32_code : GB_UINT64_code ;
    GB_Type_code Ci_code = Ci_is_32 ? GB_INT32_code  : GB_INT64_code ;
    size_t cpsize = Cp_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;

    GB_void *restrict Cx = (GB_void *) C->x ;
    int64_t kk ;

    //--------------------------------------------------------------------------
    // construct C
    //--------------------------------------------------------------------------

    if (A_iso)
    { 
        // Cx [0] = Ax [0]
        memcpy (Cx, Ax, asize) ;
    }

    if (opcode == GB_COLINDEX_idxunop_code)
    {

        //----------------------------------------------------------------------
        // COLINDEX: delete the column j
        //----------------------------------------------------------------------

        if (A_is_hyper)
        { 
            ASSERT (found) ;

            // Cp [0:k-1] = Ap [0:k-1]
            GB_cast_int (Cp, Cp_code, Ap, Ap_code, k, nth) ;

            // Cp [k:cnvec] = Ap [k+1:anvec] - ajnz
            #pragma omp parallel for num_threads(nth2)
            for (kk = k ; kk <= cnvec ; kk++)
            { 
                // Cp [kk] = Ap [kk+1] - ajnz ;
                int64_t p = GB_IGET (Ap, kk+1) - ajnz ;
                GB_ISET (Cp, kk, p) ;
            }

            // Ch [0:k-1] = Ah [0:k-1]
            GB_cast_int (Ch, Ch_code, Ah, Ah_code, k, nth) ;

            // Ch [k:cnvec-1] = Ah [k+1:anvec-1]
            GB_cast_int (GB_IADDR (Ch, k  ), Ch_code,
                         GB_IADDR (Ah, k+1), Ah_code, cnvec - k, nth) ;

        }
        else
        { 

            // Cp [0:k] = Ap [0:k]
            GB_cast_int (Cp, Cp_code, Ap, Ap_code, k+1, nth) ;

            // Cp [k+1:anvec] = Ap [k+1:anvec] - ajnz
            #pragma omp parallel for num_threads(nth2)
            for (kk = k+1 ; kk <= cnvec ; kk++)
            { 
                // Cp [kk] = Ap [kk] - ajnz ;
                int64_t p = GB_IGET (Ap, kk) - ajnz ;
                GB_ISET (Cp, kk, p) ;
            }
        }

        // Ci [0:pstart-1] = Ai [0:pstart-1]
        GB_cast_int (Ci, Ci_code, Ai, Ai_code, pstart, nth) ;

        // Ci [pstart:cnz-1] = Ai [pend:anz-1]
        GB_cast_int (GB_IADDR (Ci, pstart), Ci_code,
                     GB_IADDR (Ai, pend  ), Ai_code, cnz - pstart, nth) ;

        if (!A_iso)
        { 
            // Cx [0:pstart-1] = Ax [0:pstart-1]
            GB_memcpy (Cx, Ax, pstart * asize, nth) ;

            // Cx [pstart:cnz-1] = Ax [pend:anz-1]
            GB_memcpy (Cx + pstart * asize, Ax + pend * asize,
                (cnz - pstart) * asize, nth) ;
        }

    }
    else if (opcode == GB_COLLE_idxunop_code)
    {

        //----------------------------------------------------------------------
        // COLLE: C = A (:, 0:j)
        //----------------------------------------------------------------------

        if (A_is_hyper)
        { 
            // Cp [0:cnvec] = Ap [0:cnvec]
            GB_cast_int (Cp, Cp_code, Ap, Ap_code, cnvec+1, nth) ;

            // Ch [0:cnvec-1] = Ah [0:cnvec-1]
            GB_cast_int (Ch, Ch_code, Ah, Ah_code, cnvec, nth) ;
        }
        else
        {
            // Cp [0:k+1] = Ap [0:k+1]
            ASSERT (found) ;
            GB_cast_int (Cp, Cp_code, Ap, Ap_code, k+2, nth) ;

            // Cp [k+2:cnvec] = cnz
            #pragma omp parallel for num_threads(nth2)
            for (kk = k+2 ; kk <= cnvec ; kk++)
            { 
                // Cp [kk] = cnz ;
                GB_ISET (Cp, kk, cnz) ;
            }
        }

        // Ci [0:cnz-1] = Ai [0:cnz-1]
        GB_cast_int (Ci, Ci_code, Ai, Ai_code, cnz, nth) ;

        if (!A_iso)
        { 
            // Cx [0:cnz-1] = Ax [0:cnz-1]
            GB_memcpy (Cx, Ax, cnz * asize, nth) ;
        }

    }
    else // (opcode == GB_COLGT_idxunop_code)
    {

        //----------------------------------------------------------------------
        // COLGT: C = A (:, j+1:end)
        //----------------------------------------------------------------------

        if (A_is_hyper)
        { 
            // Cp [0:cnvec] = Ap [k+found:anvec] - pend
            #pragma omp parallel for num_threads(nth2)
            for (kk = 0 ; kk <= cnvec ; kk++)
            { 
                // Cp [kk] = Ap [kk + k + found] - pend ;
                int64_t p = GB_IGET (Ap, kk + k + found) - pend ;
                GB_ISET (Cp, kk, p) ;
            }

            // Ch [0:cnvec-1] = Ah [k+found:anvec-1]
            GB_cast_int (Ch, Ch_code, GB_IADDR (Ah, k+found), Ah_code,
                cnvec, nth) ;

        }
        else
        {

            ASSERT (found) ;

            // Cp [0:k] = 0
            GB_memset (Cp, 0, (k+1) * cpsize, nth) ;

            // Cp [k+1:cnvec] = Ap [k+1:cnvec] - pend
            #pragma omp parallel for num_threads(nth2)
            for (kk = k+1 ; kk <= cnvec ; kk++)
            { 
                // Cp [kk] = Ap [kk] - pend ;
                int64_t p = GB_IGET (Ap, kk) - pend ;
                GB_ISET (Cp, kk, p) ;
            }
        }

        // Ci [0:cnz-1] = Ai [pend:anz-1]
        GB_cast_int (Ci, Ci_code, GB_IADDR (Ai, pend), Ai_code, cnz, nth) ;

        if (!A_iso)
        { 
            // Cx [0:cnz-1] = Ax [pend:anz-1]
            GB_memcpy (Cx, Ax + pend * asize, cnz * asize, nth) ;
        }
    }

    //--------------------------------------------------------------------------
    // finalize the matrix, free workspace, and return result
    //--------------------------------------------------------------------------

    C->nvec = cnvec ;
    C->magic = GB_MAGIC ;
    C->jumbled = A_jumbled ;    // C is jumbled if A is jumbled
    C->nvals = GB_IGET (Cp, cnvec) ;
    GB_nvec_nonempty_set (C, GB_nvec_nonempty (C)) ;
    ASSERT_MATRIX_OK (C, "C output for GB_select_column", GB0) ;
    return (GrB_SUCCESS) ;
}