1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
//------------------------------------------------------------------------------
// GB_selector: select entries from a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_selector does the work for GB_select. It also deletes zombies for
// GB_wait using the GxB_NONZOMBIE operator, deletes entries outside a smaller
// matrix for GxB_*resize using GrB_ROWLE, and extracts the diagonal entries
// for GB_Vector_diag.
// For GB_resize (using GrB_ROWLE) and GB_wait (using GxB_NONZOMBIE), C may be
// NULL. In this case, A is always sparse or hypersparse. If C is NULL on
// input, A is modified in-place. Otherwise, C is an uninitialized static
// header.
// TODO: GB_selector does not exploit the mask.
#include "select/GB_select.h"
#define GB_FREE_ALL \
GB_FREE_MEMORY (&ythunk, ythunk_size) ; \
GB_FREE_MEMORY (&athunk, athunk_size) ;
GrB_Info GB_selector
(
GrB_Matrix C, // output matrix, NULL or existing header
const GrB_IndexUnaryOp op,
const bool flipij, // if true, flip i and j for user operator
GrB_Matrix A, // input matrix
const GrB_Scalar Thunk,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT_INDEXUNARYOP_OK (op, "idxunop for GB_selector", GB0) ;
ASSERT_SCALAR_OK (Thunk, "Thunk for GB_selector", GB0) ;
ASSERT_MATRIX_OK (A, "A input for GB_selector", GB0_Z) ;
// positional op (tril, triu, diag, offdiag, resize, rowindex, ...):
// can't be jumbled. nonzombie, entry-valued op, user op: jumbled OK
GB_Opcode opcode = op->opcode ;
ASSERT (GB_IMPLIES (GB_IS_INDEXUNARYOP_CODE_POSITIONAL (opcode),
!GB_JUMBLED (A))) ;
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
const bool A_iso = A->iso ;
void *ythunk = NULL ; size_t ythunk_size = 0 ;
void *athunk = NULL ; size_t athunk_size = 0 ;
//--------------------------------------------------------------------------
// get Thunk
//--------------------------------------------------------------------------
// get the type of the thunk input of the operator
ASSERT (GB_nnz ((GrB_Matrix) Thunk) > 0) ;
const GB_Type_code tcode = Thunk->type->code ;
// allocate the ythunk and athunk scalars. Use calloc instead of putting
// them on the CPU stack, so the CUDA kernels can access them.
const size_t ysize = op->ytype->size ;
const size_t asize = A->type->size ;
ythunk = GB_CALLOC_MEMORY (1, ysize, &ythunk_size) ;
athunk = GB_CALLOC_MEMORY (1, asize, &athunk_size) ;
if (ythunk == NULL || athunk == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// ythunk = (op->ytype) Thunk
GB_cast_scalar (ythunk, op->ytype->code, Thunk->x, tcode, ysize) ;
// ithunk = (int64) Thunk, if compatible
int64_t ithunk = 0 ;
if (GB_Type_compatible (GrB_INT64, Thunk->type))
{
GB_cast_scalar (&ithunk, GB_INT64_code, Thunk->x, tcode,
sizeof (int64_t)) ;
}
// athunk = (A->type) Thunk, for VALUEEQ operator only
if (opcode == GB_VALUEEQ_idxunop_code)
{
ASSERT (GB_Type_compatible (A->type, Thunk->type)) ;
GB_cast_scalar (athunk, A->type->code, Thunk->x, tcode, asize) ;
}
//--------------------------------------------------------------------------
// determine if C is iso for a non-iso A
//--------------------------------------------------------------------------
bool C_iso = A_iso || // C iso value is Ax [0]
(opcode == GB_VALUEEQ_idxunop_code) ; // C iso value is thunk
if (C_iso)
{
GB_BURBLE_MATRIX (A, "(iso select) ") ;
}
//--------------------------------------------------------------------------
// handle iso case for built-in ops that depend only on the value
//--------------------------------------------------------------------------
if (A_iso && opcode >= GB_VALUENE_idxunop_code
&& opcode <= GB_VALUELE_idxunop_code)
{
// C is either entirely empty, or a completely shallow copy of A.
// This method takes O(1) time and space.
GB_OK (GB_select_value_iso (C, op, A, ithunk, athunk, ythunk, Werk)) ;
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// bitmap/as-if-full case
//--------------------------------------------------------------------------
bool use_select_bitmap ;
if (opcode == GB_NONZOMBIE_idxunop_code)
{
// GB_select_bitmap does not support the nonzombie opcode. For the
// NONZOMBIE operator, A will never be full or bitmap.
use_select_bitmap = false ;
}
else if (opcode == GB_DIAG_idxunop_code)
{
// GB_select_bitmap supports the DIAG operator, but it is currently
// not efficient (GB_select_bitmap should return a sparse diagonal
// matrix, not bitmap). So use the sparse case if A is not bitmap,
// since the sparse case below does not support the bitmap case. For
// this case, GB_select_sparse is used when A is a sparse, hypersparse,
// or full matrix. The full case is not handled in the CUDA kernel
// below, however.
use_select_bitmap = GB_IS_BITMAP (A) ;
}
else
{
// For bitmap and full matrices, all other opcodes use GB_select_bitmap
use_select_bitmap = GB_IS_BITMAP (A) || GB_IS_FULL (A) ;
}
if (use_select_bitmap)
{
// A is bitmap/full. C is always computed as bitmap.
GB_BURBLE_MATRIX (A, "(bitmap select) ") ;
GB_OK (GB_select_bitmap (C, C_iso, op, flipij, A, ithunk, athunk,
ythunk, Werk)) ;
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// column selector
//--------------------------------------------------------------------------
if (opcode == GB_COLINDEX_idxunop_code ||
opcode == GB_COLLE_idxunop_code ||
opcode == GB_COLGT_idxunop_code)
{
// A is sparse or hypersparse, never bitmap or full.
// COLINDEX: C = A(:,j)
// COLLE: C = A(:,0:j)
// COLGT: C = A(:,j+1:n)
// where j = ithunk.
GB_OK (GB_select_column (C, op, A, ithunk, Werk)) ;
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// general case: usually sparse/hypersparse, with one exception
//--------------------------------------------------------------------------
// C is computed as sparse/hypersparse. A is sparse/hypersparse, except
// for a single case: for the DIAG operator, A may be full. See
// use_select_bitmap above.
info = GrB_NO_VALUE ;
#if defined ( GRAPHBLAS_HAS_CUDA )
if ((GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A))
&& GB_cuda_select_branch (A, op))
{
// It is possible for non-sparse matrices to use the sparse kernel; see
// the use_select_bitmap test above (the DIAG operator). The CUDA
// select_sparse kernel will not work in this case, so make this go to
// the CPU.
// Fixme CUDA: put the test of sparse(A) or hypersparse(A) in
// GB_cuda_select_branch.
info = GB_cuda_select_sparse (C, C_iso, op, flipij, A, athunk, ythunk,
Werk) ;
}
#endif
if (info == GrB_NO_VALUE)
{
info = GB_select_sparse (C, C_iso, op, flipij, A, ithunk, athunk,
ythunk, Werk) ;
}
GB_OK (info) ; // check for out-of-memory or other failures
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
ASSERT_MATRIX_OK (C, "C output of GB_selector", GB0) ;
return (GrB_SUCCESS) ;
}
|