1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
//------------------------------------------------------------------------------
// GB_select_positional_phase1_template: count entries for C=select(A,thunk)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// A is sparse, hypersparse, or full (just for DIAG case)
{
//==========================================================================
// positional op (tril, triu, diag, offdiag, row*, but not col*)
//==========================================================================
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)
|| (opcode == GB_DIAG_idxunop_code)) ;
ASSERT (!GB_IS_BITMAP (A)) ;
//--------------------------------------------------------------------------
// tril, triu, diag, offdiag, row*: binary search in each vector
//--------------------------------------------------------------------------
int64_t k ;
#pragma omp parallel for num_threads(A_nthreads) schedule(guided)
for (k = 0 ; k < anvec ; k++)
{
//----------------------------------------------------------------------
// get A(:,k)
//----------------------------------------------------------------------
int64_t pA_start = GBp_A (Ap, k, avlen) ;
int64_t pA_end = GBp_A (Ap, k+1, avlen) ;
int64_t p = pA_start ;
int64_t cjnz = 0 ;
int64_t ajnz = pA_end - pA_start ;
bool found = false ;
if (ajnz > 0)
{
//------------------------------------------------------------------
// search for the entry A(i,k)
//------------------------------------------------------------------
int64_t ifirst = GBi_A (Ai, pA_start, avlen) ;
int64_t ilast = GBi_A (Ai, pA_end-1, avlen) ;
#if defined ( GB_ROWINDEX_SELECTOR )
int64_t i = -ithunk ;
#elif defined ( GB_ROWLE_SELECTOR ) || defined ( GB_ROWGT_SELECTOR )
int64_t i = ithunk ;
#else
// TRIL, TRIU, DIAG, OFFDIAG
int64_t j = GBh_A (Ah, k) ;
int64_t i = j-ithunk ;
#endif
if (i < ifirst)
{
// all entries in A(:,k) come after i
;
}
else if (i > ilast)
{
// all entries in A(:,k) come before i
p = pA_end ;
}
else if (ajnz == avlen)
{
// A(:,k) is dense (either A is full, or has a dense vector)
found = true ;
p += i ;
ASSERT (GBi_A (Ai, p, avlen) == i) ;
}
else
{
// binary search in A(:,k) for A (i,k); sparse/hyper case only
int64_t pright = pA_end - 1 ;
ASSERT (Ai != NULL) ;
found = GB_split_binary_search (i, Ai, Ai_is_32, &p, &pright) ;
}
#if defined ( GB_TRIL_SELECTOR )
// keep p to pA_end-1
cjnz = pA_end - p ;
#elif defined ( GB_ROWGT_SELECTOR )
// if found, keep p+1 to pA_end-1
// else keep p to pA_end-1
if (found)
{
p++ ;
// now in both cases, keep p to pA_end-1
}
// keep p to pA_end-1
cjnz = pA_end - p ;
#elif defined ( GB_TRIU_SELECTOR ) \
|| defined ( GB_ROWLE_SELECTOR )
// if found, keep pA_start to p
// else keep pA_start to p-1
if (found)
{
p++ ;
// now in both cases, keep pA_start to p-1
}
// keep pA_start to p-1
cjnz = p - pA_start ;
#elif defined ( GB_DIAG_SELECTOR )
// if found, keep p
// else keep nothing
cjnz = found ;
if (!found) p = -1 ;
// if (cjnz >= 0) keep p, else keep nothing
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// if found, keep pA_start to p-1 and p+1 to pA_end-1
// else keep pA_start to pA_end
cjnz = ajnz - found ;
if (!found)
{
p = pA_end ;
// now just keep pA_start to p-1; p+1 to pA_end is
// now empty
}
// in both cases, keep pA_start to p-1 and
// p+1 to pA_end-1. If the entry is not found, then
// p == pA_end, and all entries are kept.
#endif
}
//----------------------------------------------------------------------
// log the result for the kth vector
//----------------------------------------------------------------------
GB_ISET (Zp, k, p) ; // Zp [k] = p ;
GB_ISET (Cp, k, cjnz) ; // Cp [k] = cjnz ;
}
//--------------------------------------------------------------------------
// compute Wfirst and Wlast for each task
//--------------------------------------------------------------------------
// Wfirst [0..A_ntasks-1] and Wlast [0..A_ntasks-1] are required for
// constructing Cp_kfirst [0..A_ntasks-1] in GB_select_sparse.
for (int tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
if (kfirst <= klast)
{
int64_t pA_start = pstart_Aslice [tid] ;
int64_t pA_end = GBp_A (Ap, kfirst+1, avlen) ;
pA_end = GB_IMIN (pA_end, pstart_Aslice [tid+1]) ;
int64_t pz = GB_IGET (Zp, kfirst) ;
if (pA_start < pA_end)
{
#if defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [kfirst] to pA_end-1
int64_t p = GB_IMAX (pz, pA_start) ;
Wfirst [tid] = GB_IMAX (0, pA_end - p) ;
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp [kfirst]-1
int64_t p = GB_IMIN (pz, pA_end) ;
Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
int64_t p = pz ;
Wfirst [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp [kfirst]-1
int64_t p = GB_IMIN (pz, pA_end) ;
Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
// keep Zp [kfirst]+1 to pA_end-1
p = GB_IMAX (pz+1, pA_start) ;
Wfirst [tid] += GB_IMAX (0, pA_end - p) ;
#endif
}
}
if (kfirst < klast)
{
int64_t pA_start = GBp_A (Ap, klast, avlen) ;
int64_t pA_end = pstart_Aslice [tid+1] ;
int64_t pz = GB_IGET (Zp, klast) ;
if (pA_start < pA_end)
{
#if defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [klast] to pA_end-1
int64_t p = GB_IMAX (pz, pA_start) ;
Wlast [tid] = GB_IMAX (0, pA_end - p) ;
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp [klast]-1
int64_t p = GB_IMIN (pz, pA_end) ;
Wlast [tid] = GB_IMAX (0, p - pA_start) ;
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
int64_t p = pz ;
Wlast [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp [klast]-1
int64_t p = GB_IMIN (pz, pA_end) ;
Wlast [tid] = GB_IMAX (0, p - pA_start) ;
// keep Zp [klast]+1 to pA_end-1
p = GB_IMAX (pz+1, pA_start) ;
Wlast [tid] += GB_IMAX (0, pA_end - p) ;
#endif
}
}
}
}
#undef GB_TRIL_SELECTOR
#undef GB_TRIU_SELECTOR
#undef GB_DIAG_SELECTOR
#undef GB_OFFDIAG_SELECTOR
#undef GB_ROWINDEX_SELECTOR
#undef GB_ROWLE_SELECTOR
#undef GB_ROWGT_SELECTOR
|