File: GB_select_phase2_template.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (222 lines) | stat: -rw-r--r-- 8,828 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//------------------------------------------------------------------------------
// GB_select_phase2: C=select(A,thunk)
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C is sparse or hypersparse.  Cp is not modifed but Ci and Cx are.  A is
// never bitmap.  It is sparse or hypersparse in most cases.  It can also be
// full for DIAG.

{

    //--------------------------------------------------------------------------
    // get C, A and its slicing
    //--------------------------------------------------------------------------

    const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
    const int64_t *restrict klast_Aslice  = A_ek_slicing + A_ntasks ;
    const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;

    GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
    GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
    GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;

    const GB_A_TYPE *restrict Ax = (GB_A_TYPE *) A->x ;
    size_t asize = A->type->size ;

    int64_t avlen = A->vlen ;
    int64_t avdim = A->vdim ;

    // if A is bitmap, the bitmap selector is always used instead
    ASSERT (!GB_IS_BITMAP (A)) ;
    #ifndef GB_DIAG_SELECTOR
    // if A is full, all opcodes except DIAG use the bitmap selector instead
    ASSERT (!GB_IS_FULL (A)) ;
    #endif

    GB_Cp_DECLARE (Cp, const) ; GB_Cp_PTR (Cp, C) ;
    GB_Ci_DECLARE (Ci,      ) ; GB_Ci_PTR (Ci, C) ;

    #ifndef GB_C_TYPE
    #define GB_C_TYPE GB_A_TYPE
    #endif

    GB_C_TYPE *restrict Cx = (GB_C_TYPE *) C->x ;

    //--------------------------------------------------------------------------
    // C = select (A)
    //--------------------------------------------------------------------------

    int tid ;
    #pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
    for (tid = 0 ; tid < A_ntasks ; tid++)
    {

        // if kfirst > klast then task tid does no work at all
        int64_t kfirst = kfirst_Aslice [tid] ;
        int64_t klast  = klast_Aslice  [tid] ;

        //----------------------------------------------------------------------
        // selection from vectors kfirst to klast
        //----------------------------------------------------------------------

        for (int64_t k = kfirst ; k <= klast ; k++)
        {

            //------------------------------------------------------------------
            // find the part of A(:,k) to be operated on by this task
            //------------------------------------------------------------------

            GB_GET_PA_AND_PC (pA_start, pA_end, pC, tid, k, kfirst, klast,
                pstart_Aslice, Cp_kfirst,
                GBp_A (Ap, k, avlen), GBp_A (Ap, k+1, avlen), GB_IGET (Cp, k)) ;

            //------------------------------------------------------------------
            // compact Ai and Ax [pA_start ... pA_end-1] into Ci and Cx
            //------------------------------------------------------------------

            #if defined ( GB_ENTRY_SELECTOR )

                int64_t j = GBh_A (Ah, k) ;
                for (int64_t pA = pA_start ; pA < pA_end ; pA++)
                {
                    // A is sparse or hypersparse
                    ASSERT (Ai != NULL) ;
                    int64_t i = GB_IGET (Ai, pA) ;
                    GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
                    if (keep)
                    { 
                        ASSERT (pC >= GB_IGET (Cp, k)) ;
                        ASSERT (pC < GB_IGET (Cp, k+1)) ;
                        GB_ISET (Ci, pC, i) ;               // Ci [pC] = i
                        GB_SELECT_ENTRY (Cx, pC, Ax, pA) ;  // Cx [pC] = Ax [pA]
                        pC++ ;
                    }
                }

            #elif defined ( GB_TRIL_SELECTOR  ) || \
                  defined ( GB_ROWGT_SELECTOR )

                // keep Zp [k] to pA_end-1
                int64_t pz = GB_IGET (Zp, k) ;
                int64_t p = GB_IMAX (pz, pA_start) ;
                int64_t mynz = pA_end - p ;
                if (mynz > 0)
                { 
                    // A and C are both sparse or hypersparse
                    ASSERT (pA_start <= p && p + mynz <= pA_end) ;
                    ASSERT (pC >= GB_IGET (Cp, k)) ;
                    ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
                    ASSERT (Ai != NULL) ;
                    for (int64_t kk = 0 ; kk < mynz ; kk++)
                    {
                        int64_t i = GB_IGET (Ai, p+kk) ;    // i = Ai [p+kk]
                        GB_ISET (Ci, pC+kk, i) ;            // Ci [pC+kk] = i
                    }
                    #if !GB_ISO_SELECT
                    memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
                    #endif
                }

            #elif defined ( GB_TRIU_SELECTOR  ) || \
                  defined ( GB_ROWLE_SELECTOR )

                // keep pA_start to Zp[k]-1
                int64_t pz = GB_IGET (Zp, k) ;
                int64_t p = GB_IMIN (pz, pA_end) ;
                int64_t mynz = p - pA_start ;
                if (mynz > 0)
                { 
                    // A and C are both sparse or hypersparse
                    ASSERT (pC >= GB_IGET (Cp, k)) ;
                    ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
                    ASSERT (Ai != NULL) ;
                    for (int64_t kk = 0 ; kk < mynz ; kk++)
                    {
                        int64_t i = GB_IGET (Ai, pA_start+kk) ;
                        GB_ISET (Ci, pC+kk, i) ;            // Ci [pC+kk] = i
                    }
                    #if !GB_ISO_SELECT
                    memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
                    #endif
                }

            #elif defined ( GB_DIAG_SELECTOR )

                // task that owns the diagonal entry does this work
                // A can be sparse, hypersparse, or full, but not bitmap
                int64_t pz = GB_IGET (Zp, k) ;
                int64_t p = pz ;
                if (pA_start <= p && p < pA_end)
                { 
                    ASSERT (pC >= GB_IGET (Cp, k)) ;
                    ASSERT (pC + 1 <= GB_IGET (Cp, k+1)) ;
                    int64_t i = GBi_A (Ai, p, avlen) ;      // i = Ai [p]
                    GB_ISET (Ci, pC, i) ;                   // Ci [pC] = i ;
                    #if !GB_ISO_SELECT
                    memcpy (Cx +pC*asize, Ax +p*asize, asize) ;
                    #endif
                }

            #elif defined ( GB_OFFDIAG_SELECTOR  ) || \
                  defined ( GB_ROWINDEX_SELECTOR )

                // keep pA_start to Zp[k]-1
                int64_t pz = GB_IGET (Zp, k) ;
                int64_t p = GB_IMIN (pz, pA_end) ;
                int64_t mynz = p - pA_start ;
                if (mynz > 0)
                { 
                    // A and C are both sparse or hypersparse
                    ASSERT (pC >= GB_IGET (Cp, k)) ;
                    ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
                    ASSERT (Ai != NULL) ;
                    for (int64_t kk = 0 ; kk < mynz ; kk++)
                    {
                        int64_t i = GB_IGET (Ai, pA_start+kk) ;
                        GB_ISET (Ci, pC+kk, i) ;            // Ci [pC+kk] = i
                    }
                    #if !GB_ISO_SELECT
                    memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
                    #endif
                    pC += mynz ;
                }

                // keep Zp[k]+1 to pA_end-1
                pz = GB_IGET (Zp, k) + 1 ;
                p = GB_IMAX (pz, pA_start) ;
                mynz = pA_end - p ;
                if (mynz > 0)
                { 
                    // A and C are both sparse or hypersparse
                    ASSERT (pA_start <= p && p < pA_end) ;
                    ASSERT (pC >= GB_IGET (Cp, k)) ;
                    ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
                    ASSERT (Ai != NULL) ;
                    for (int64_t kk = 0 ; kk < mynz ; kk++)
                    {
                        int64_t i = GB_IGET (Ai, p+kk) ;    // i = Ai [p+kk]
                        GB_ISET (Ci, pC+kk, i) ;            // Ci [pC+kk] = i
                    }
                    #if !GB_ISO_SELECT
                    memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
                    #endif
                }

            #endif
        }
    }
}

#undef GB_TRIL_SELECTOR
#undef GB_TRIU_SELECTOR
#undef GB_DIAG_SELECTOR
#undef GB_OFFDIAG_SELECTOR
#undef GB_ROWINDEX_SELECTOR
#undef GB_ROWLE_SELECTOR
#undef GB_ROWGT_SELECTOR