1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//------------------------------------------------------------------------------
// GB_select_phase2: C=select(A,thunk)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C is sparse or hypersparse. Cp is not modifed but Ci and Cx are. A is
// never bitmap. It is sparse or hypersparse in most cases. It can also be
// full for DIAG.
{
//--------------------------------------------------------------------------
// get C, A and its slicing
//--------------------------------------------------------------------------
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
const GB_A_TYPE *restrict Ax = (GB_A_TYPE *) A->x ;
size_t asize = A->type->size ;
int64_t avlen = A->vlen ;
int64_t avdim = A->vdim ;
// if A is bitmap, the bitmap selector is always used instead
ASSERT (!GB_IS_BITMAP (A)) ;
#ifndef GB_DIAG_SELECTOR
// if A is full, all opcodes except DIAG use the bitmap selector instead
ASSERT (!GB_IS_FULL (A)) ;
#endif
GB_Cp_DECLARE (Cp, const) ; GB_Cp_PTR (Cp, C) ;
GB_Ci_DECLARE (Ci, ) ; GB_Ci_PTR (Ci, C) ;
#ifndef GB_C_TYPE
#define GB_C_TYPE GB_A_TYPE
#endif
GB_C_TYPE *restrict Cx = (GB_C_TYPE *) C->x ;
//--------------------------------------------------------------------------
// C = select (A)
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
//----------------------------------------------------------------------
// selection from vectors kfirst to klast
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// find the part of A(:,k) to be operated on by this task
//------------------------------------------------------------------
GB_GET_PA_AND_PC (pA_start, pA_end, pC, tid, k, kfirst, klast,
pstart_Aslice, Cp_kfirst,
GBp_A (Ap, k, avlen), GBp_A (Ap, k+1, avlen), GB_IGET (Cp, k)) ;
//------------------------------------------------------------------
// compact Ai and Ax [pA_start ... pA_end-1] into Ci and Cx
//------------------------------------------------------------------
#if defined ( GB_ENTRY_SELECTOR )
int64_t j = GBh_A (Ah, k) ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// A is sparse or hypersparse
ASSERT (Ai != NULL) ;
int64_t i = GB_IGET (Ai, pA) ;
GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
if (keep)
{
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC < GB_IGET (Cp, k+1)) ;
GB_ISET (Ci, pC, i) ; // Ci [pC] = i
GB_SELECT_ENTRY (Cx, pC, Ax, pA) ; // Cx [pC] = Ax [pA]
pC++ ;
}
}
#elif defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [k] to pA_end-1
int64_t pz = GB_IGET (Zp, k) ;
int64_t p = GB_IMAX (pz, pA_start) ;
int64_t mynz = pA_end - p ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pA_start <= p && p + mynz <= pA_end) ;
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
ASSERT (Ai != NULL) ;
for (int64_t kk = 0 ; kk < mynz ; kk++)
{
int64_t i = GB_IGET (Ai, p+kk) ; // i = Ai [p+kk]
GB_ISET (Ci, pC+kk, i) ; // Ci [pC+kk] = i
}
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
#endif
}
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp[k]-1
int64_t pz = GB_IGET (Zp, k) ;
int64_t p = GB_IMIN (pz, pA_end) ;
int64_t mynz = p - pA_start ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
ASSERT (Ai != NULL) ;
for (int64_t kk = 0 ; kk < mynz ; kk++)
{
int64_t i = GB_IGET (Ai, pA_start+kk) ;
GB_ISET (Ci, pC+kk, i) ; // Ci [pC+kk] = i
}
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
#endif
}
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
// A can be sparse, hypersparse, or full, but not bitmap
int64_t pz = GB_IGET (Zp, k) ;
int64_t p = pz ;
if (pA_start <= p && p < pA_end)
{
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC + 1 <= GB_IGET (Cp, k+1)) ;
int64_t i = GBi_A (Ai, p, avlen) ; // i = Ai [p]
GB_ISET (Ci, pC, i) ; // Ci [pC] = i ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, asize) ;
#endif
}
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp[k]-1
int64_t pz = GB_IGET (Zp, k) ;
int64_t p = GB_IMIN (pz, pA_end) ;
int64_t mynz = p - pA_start ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
ASSERT (Ai != NULL) ;
for (int64_t kk = 0 ; kk < mynz ; kk++)
{
int64_t i = GB_IGET (Ai, pA_start+kk) ;
GB_ISET (Ci, pC+kk, i) ; // Ci [pC+kk] = i
}
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
#endif
pC += mynz ;
}
// keep Zp[k]+1 to pA_end-1
pz = GB_IGET (Zp, k) + 1 ;
p = GB_IMAX (pz, pA_start) ;
mynz = pA_end - p ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pA_start <= p && p < pA_end) ;
ASSERT (pC >= GB_IGET (Cp, k)) ;
ASSERT (pC + mynz <= GB_IGET (Cp, k+1)) ;
ASSERT (Ai != NULL) ;
for (int64_t kk = 0 ; kk < mynz ; kk++)
{
int64_t i = GB_IGET (Ai, p+kk) ; // i = Ai [p+kk]
GB_ISET (Ci, pC+kk, i) ; // Ci [pC+kk] = i
}
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
#endif
}
#endif
}
}
}
#undef GB_TRIL_SELECTOR
#undef GB_TRIU_SELECTOR
#undef GB_DIAG_SELECTOR
#undef GB_OFFDIAG_SELECTOR
#undef GB_ROWINDEX_SELECTOR
#undef GB_ROWLE_SELECTOR
#undef GB_ROWGT_SELECTOR
|