1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//------------------------------------------------------------------------------
// GB_ek_slice_merge.h: slice the entries and vectors of a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_EK_SLICE_MERGE_H
#define GB_EK_SLICE_MERGE_H
//------------------------------------------------------------------------------
// GB_ek_slice_merge* methods
//------------------------------------------------------------------------------
// GB_ek_slice slices the entries of a matrix or vector into A_ntasks slices.
// Its prototype is in Source/callback:
// void GB_ek_slice // slice a matrix
// (
// // output:
// int64_t *restrict A_ek_slicing, // size 3*A_ntasks+1
// // input:
// GrB_Matrix A, // matrix to slice
// int A_ntasks // # of tasks
// ) ;
// Task t does entries pstart_slice [t] to pstart_slice [t+1]-1 and
// vectors kfirst_slice [t] to klast_slice [t]. The first and last vectors
// may be shared with prior slices and subsequent slices.
// On input, A_ntasks must be <= nnz (A), unless nnz (A) is zero. In that
// case, A_ntasks must be 1.
// GB_ek_slice can optionally be followed by GB_ek_slice_merge1 and
// GB_ek_slice_merge2, defined below, to finalize the work on the output matrix
// C->p, for sparse select and emult methods.
//------------------------------------------------------------------------------
// GB_ek_slice_merge1: merge column counts for a matrix
//------------------------------------------------------------------------------
// The input matrix A has been sliced via GB_ek_slice, and scanned to compute
// the counts of entries in each vector of C in Cp, Wfirst, and Wlast. This
// phase finalizes the column counts, Cp, merging the results of each task.
// On input, Cp [k] has been partially computed. Task tid operators on vector
// kfirst = kfirst_Aslice [tid] to klast = klast_Aslice [tid]. If kfirst < k <
// klast, then Cp [k] is the total count of entries in C(:,k). Otherwise, the
// counts are held in Wfirst and Wlast, and Cp [k] is zero (or uninititalized).
// Wfirst [tid] is the number of entries in C(:,kfirst) constructed by task
// tid, and Wlast [tid] is the number of entries in C(:,klast) constructed by
// task tid.
// This function sums up the entries computed for C(:,k) by all tasks, so that
// on output, Cp [k] is the total count of entries in C(:,k).
static inline void GB_ek_slice_merge1 // merge column counts for the matrix C
(
// input/output:
void *Cp, // column counts
// input:
const bool Cp_is_32, // if true, Cp is 32-bit; else 64
const uint64_t *restrict Wfirst, // size A_ntasks
const uint64_t *restrict Wlast, // size A_ntasks
const int64_t *A_ek_slicing, // size 3*A_ntasks+1
const int A_ntasks // # of tasks to slice A
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_IDECL (Cp, , u) ; GB_IPTR (Cp, Cp_is_32) ;
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
// const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
//--------------------------------------------------------------------------
// merge column counts
//--------------------------------------------------------------------------
int64_t kprior = -1 ;
for (int tid = 0 ; tid < A_ntasks ; tid++)
{
//----------------------------------------------------------------------
// sum up the partial result that thread tid computed for kfirst
//----------------------------------------------------------------------
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
if (kfirst <= klast)
{
uint64_t c = Wfirst [tid] ;
if (kprior < kfirst)
{
// This thread is the first one that did work on
// A(:,kfirst), so use it to start the reduction.
// Cp [kfirst] = Wfirst [tid] ;
}
else
{
// Cp [kfirst] += Wfirst [tid] ;
c += GB_IGET (Cp, kfirst) ;
}
// Cp [kfirst] = c ;
GB_ISET (Cp, kfirst, c) ;
kprior = kfirst ;
}
//----------------------------------------------------------------------
// sum up the partial result that thread tid computed for klast
//----------------------------------------------------------------------
if (kfirst < klast)
{
ASSERT (kprior < klast) ;
// This thread is the first one that did work on
// A(:,klast), so use it to start the reduction.
// Cp [klast] = Wlast [tid] ;
uint64_t c = Wlast [tid] ;
GB_ISET (Cp, klast, c) ;
kprior = klast ;
}
}
}
//------------------------------------------------------------------------------
// GB_ek_slice_merge2: merge final results for matrix C
//------------------------------------------------------------------------------
// Prior to calling this function, a method using GB_ek_slice to slice an input
// matrix A has computed the vector counts Cp, where Cp [k] is the number of
// entries in the kth vector of C on input to this function.
// The input matrix and the matrix C is sliced by kfirst_Aslice and
// klast_Aslice, where kfirst = kfirst_Aslice [tid] is the first vector in A
// and C computed by task tid, and klast = klast_Aslice [tid] is the last
// vector computed by task tid. Tasks tid and tid+1 may cooperate on a single
// vector, however, where klast_Aslice [tid] may be the same as kfirst_Aslice
// [tid]. The method has also computed Wfirst [tid] and Wlast [tid] for each
// task id, tid. Wfirst [tid] is the number of entries task tid contributes to
// C(:,kfirst), and Wlast [tid] is the number of entries task tid contributes
// to C(:,klast).
// Cp_kfirst [tid] is the position in C where task tid owns entries in
// C(:,kfirst), which is a cumulative sum of the entries computed in C(:,k) for
// all tasks that cooperate to compute that vector, starting at Cp [kfirst].
// There is no need to compute this for C(:,klast): if kfirst < klast, then
// either task tid fully owns C(:,klast), or it is always the first task to
// operate on C(:,klast). In both cases, task tid starts its computations at
// the top of C(:,klast), which can be found at Cp [klast].
static inline void GB_ek_slice_merge2 // merge final results for matrix C
(
// output:
uint64_t *restrict Cp_kfirst, // size A_ntasks
// input:
const void *Cp, // size C->nvec+1
const bool Cp_is_32, // if true, Cp is 32-bit; else 64
const uint64_t *restrict Wfirst, // size A_ntasks
const uint64_t *restrict Wlast, // size A_ntasks
const int64_t *A_ek_slicing, // size 3*A_ntasks+1
const int A_ntasks // # of tasks to slice A and construct C
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_IDECL (Cp, const, u) ; GB_IPTR (Cp, Cp_is_32) ;
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
// const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
//--------------------------------------------------------------------------
// determine the slice boundaries in the new C matrix
//--------------------------------------------------------------------------
int64_t kprior = -1 ;
uint64_t pC = 0 ;
for (int tid = 0 ; tid < A_ntasks ; tid++)
{
int64_t kfirst = kfirst_Aslice [tid] ;
if (kprior < kfirst)
{
// Task tid is the first one to do work on C(:,kfirst), so it
// starts at Cp [kfirst], and it contributes Wfirst [tid] entries
// to C(:,kfirst).
pC = GB_IGET (Cp, kfirst) ;
kprior = kfirst ;
}
// Task tid contributes Wfirst [tid] entries to C(:,kfirst)
Cp_kfirst [tid] = pC ;
pC += Wfirst [tid] ;
int64_t klast = klast_Aslice [tid] ;
if (kfirst < klast)
{
// Task tid is the last to contribute to C(:,kfirst).
ASSERT (pC == GB_IGET (Cp, kfirst+1)) ;
// Task tid contributes the first Wlast [tid] entries to
// C(:,klast), so the next task tid+1 starts at location Cp [klast]
// + Wlast [tid], if its first vector is klast of this task.
pC = GB_IGET (Cp, klast) + Wlast [tid] ;
kprior = klast ;
}
}
}
#endif
|