File: GB_p_slice_template.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (191 lines) | stat: -rw-r--r-- 6,696 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//------------------------------------------------------------------------------
// GB_p_slice_template: partition Work for a set of tasks
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// This is a templatized method where _TYPE is 32 or 64 for uint32_t and
// uint64_t, or float.

//------------------------------------------------------------------------------
// GB_p_slice_worker_TYPE: partition Work for a set of tasks
//------------------------------------------------------------------------------

static void GB_p_slice_worker_TYPE
(
    int64_t *restrict Slice,            // size ntasks+1
    const GB_Work_TYPE *restrict Work,  // array size n+1
    int tlo,                            // assign to Slice [(tlo+1):(thi-1)]
    int thi                     
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    #ifdef GB_DEBUG
    ASSERT (Work != NULL) ;
    ASSERT (Slice != NULL) ;
    ASSERT (0 <= tlo && tlo < thi - 1) ;
    for (int t = tlo+1 ; t <= thi-1 ; t++)
    {
        ASSERT (Slice [t] == -1) ;
    }
    #endif

    //--------------------------------------------------------------------------
    // assign work to Slice [(tlo+1):(thi-1)]
    //--------------------------------------------------------------------------

    // klo = Slice [tlo] and khi = Slice [thi] are defined on input, where
    // tlo < thi - 1.  This determines the task boundaries for tasks
    // tlo+1 to thi-1, which defines Slice [(tlo+1):(thi-1)].

    int64_t klo = Slice [tlo] ;
    int64_t khi = Slice [thi] ;         ASSERT (0 <= klo && klo <= khi) ;
    GB_Work_TYPE p1 = Work [klo] ;
    GB_Work_TYPE p2 = Work [khi] ;      ASSERT (p1 <= p2) ;

    if (p1 == p2 || klo == khi)
    {

        //----------------------------------------------------------------------
        // no work is left so simply fill in with empty tasks
        //----------------------------------------------------------------------

        int64_t k = klo ;
        for (int64_t t = tlo+1 ; t <= thi-1 ; t++)
        { 
            Slice [t] = k ;
        }

    }
    else // p1 < p2 && klo < khi
    {

        //----------------------------------------------------------------------
        // find task t that evenly partitions the work p1:p2 to tasks tlo:thi
        //----------------------------------------------------------------------

        ASSERT (p1 < p2) ;
        int64_t k = (klo + khi) / 2 ;       ASSERT (klo <= k && k <= khi) ;
        GB_Work_TYPE p = Work [k] ;         ASSERT (p1 <= p && p <= p2) ;
        double ntasks = thi - tlo ;
        double ratio = (((double) (p - p1)) / ((double) (p2 - p1))) ;
        int t = tlo + (int) floor (ratio * ntasks) ;
        t = GB_IMAX (t, tlo+1) ;
        t = GB_IMIN (t, thi-1) ;            ASSERT (tlo < t && t < thi) ;

        //----------------------------------------------------------------------
        // assign work to task t
        //----------------------------------------------------------------------

        ASSERT (Slice [t] == -1) ;
        Slice [t] = k ;

        //----------------------------------------------------------------------
        // recursively partition for tasks (tlo+1):(t-1) and (t+1):(thi-1)
        //----------------------------------------------------------------------

        if (tlo < t-1)
        { 
            GB_p_slice_worker_TYPE (Slice, Work, tlo, t) ;
        }
        if (t < thi-1)
        { 
            GB_p_slice_worker_TYPE (Slice, Work, t, thi) ;
        }
    }
}

//------------------------------------------------------------------------------
// GB_p_slice_TYPE: partition Work for a set of tasks
//------------------------------------------------------------------------------

void GB_p_slice_TYPE     // slice Work, uint32_t, uint64_t, or float
(
    // output:
    int64_t *restrict Slice,    // size ntasks+1
    // input:
    const GB_Work_TYPE *Work,   // array size n+1
    const int64_t n,
    const int ntasks            // # of tasks
    #ifdef GB_ENABLE_PERFECT_BALANCE
    , const bool perfectly_balanced
    #endif
)
{

    ASSERT (Work != NULL) ;

    #ifdef GB_DEBUG
    for (int taskid = 0 ; taskid <= ntasks ; taskid++)
    {
        Slice [taskid] = -1 ;
    }
    #endif

    if (n == 0 || ntasks <= 1 || Work [n] == 0)
    { 
        // matrix is empty, or a single thread is used
        memset ((void *) Slice, 0, ntasks * sizeof (int64_t)) ;
        Slice [ntasks] = n ;
    }
    else
    {
        // slice Work by # of entries
        Slice [0] = 0 ;
        Slice [ntasks] = n ;
        #ifdef GB_ENABLE_PERFECT_BALANCE
        if (perfectly_balanced)
        {
            // this method is costly, and should only be used if the
            // work is to be perfectly balanced (in particular, when there
            // is just one task per thread, with static scheduling).  The Work
            // array must be uint32_t or uint64_t.
            const double work = (double) (Work [n]) ;
            int64_t k = 0 ;
            for (int taskid = 1 ; taskid < ntasks ; taskid++)
            { 
                // binary search to find k so that Work [k] == (taskid*work) /
                // ntasks.  The exact value will not typically not be found;
                // just pick what the binary search comes up with.
                int64_t wtask = (int64_t) GB_PART (taskid, work, ntasks) ;
                int64_t pright = n ;
                GB_trim_binary_search_TYPE (wtask, Work, &k, &pright) ;
                Slice [taskid] = k ;
            }
        }
        else
        #endif
        { 
            // this is much faster, and results in good load balancing if
            // there is more than one task per thread, and dynamic
            // scheduling is used.
            GB_p_slice_worker_TYPE (Slice, Work, 0, ntasks) ;
        }
    }

    //--------------------------------------------------------------------------
    // check result
    //--------------------------------------------------------------------------

    #ifdef GB_DEBUG
    ASSERT (Slice [0] == 0) ;
    ASSERT (Slice [ntasks] == n) ;
    for (int taskid = 0 ; taskid < ntasks ; taskid++)
    {
        ASSERT (Slice [taskid] <= Slice [taskid+1]) ;
    }
    #endif
}

#undef GB_Work_TYPE
#undef GB_p_slice_TYPE
#undef GB_p_slice_worker_TYPE
#undef GB_trim_binary_search_TYPE