1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
//------------------------------------------------------------------------------
// GB_split_sparse: split a sparse/hypersparse matrix into tiles
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Each output tile is first created in sparse/hyper form, matching the input
// matrix, and then conformed to its desired sparsity format.
#define GB_FREE_WORKSPACE \
GB_WERK_POP (C_ek_slicing, int64_t) ; \
GB_FREE_MEMORY (&Wp, Wp_size) ;
#define GB_FREE_ALL \
GB_FREE_WORKSPACE ; \
GB_Matrix_free (&C) ;
#include "split/GB_split.h"
#include "jitifyer/GB_stringify.h"
#include "apply/GB_apply.h"
GrB_Info GB_split_sparse // split a sparse matrix
(
GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const int64_t m,
const int64_t n,
const int64_t *restrict Tile_rows, // size m+1
const int64_t *restrict Tile_cols, // size n+1
const GrB_Matrix A, // input matrix
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GrB_Info info ;
int A_sparsity = GB_sparsity (A) ;
bool A_is_hyper = (A_sparsity == GxB_HYPERSPARSE) ;
ASSERT (A_is_hyper || A_sparsity == GxB_SPARSE) ;
GrB_Matrix C = NULL ;
GB_WERK_DECLARE (C_ek_slicing, int64_t) ;
ASSERT_MATRIX_OK (A, "A sparse for split", GB0) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_PENDING (A)) ;
int sparsity_control = A->sparsity_control ;
float hyper_switch = A->hyper_switch ;
bool csc = A->is_csc ;
GrB_Type atype = A->type ;
size_t asize = atype->size ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int64_t nouter = csc ? n : m ;
int64_t ninner = csc ? m : n ;
const int64_t *Tile_vdim = csc ? Tile_cols : Tile_rows ;
const int64_t *Tile_vlen = csc ? Tile_rows : Tile_cols ;
int64_t anvec = A->nvec ;
int64_t anz = GB_nnz (A) ;
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
const bool A_iso = A->iso ;
const bool Ap_is_32 = A->p_is_32 ;
const bool Aj_is_32 = A->j_is_32 ;
const bool Ai_is_32 = A->i_is_32 ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
// FUTURE: Wp is allocated with the same integers as Ap, but it could be
// chosen based on anz instead.
GB_MDECL (Wp, , u) ; size_t Wp_size = 0 ;
size_t apsize = (Ap_is_32) ? sizeof (uint32_t) : sizeof (uint64_t) ;
Wp = GB_MALLOC_MEMORY (anvec, apsize, &Wp_size) ;
if (Wp == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_memcpy (Wp, Ap, anvec * apsize, nthreads_max) ;
GB_IPTR (Wp, Ap_is_32) ;
//--------------------------------------------------------------------------
// split A into tiles
//--------------------------------------------------------------------------
int64_t akend = 0 ;
for (int64_t outer = 0 ; outer < nouter ; outer++)
{
//----------------------------------------------------------------------
// find the starting and ending vector of these tiles
//----------------------------------------------------------------------
// The tile appears in vectors avstart:avend-1 of A, and indices
// aistart:aiend-1.
const int64_t avstart = Tile_vdim [outer] ;
const int64_t avend = Tile_vdim [outer+1] ;
int64_t akstart = akend ;
if (A_is_hyper)
{
// A is hypersparse: look for vector avend in the A->h hyper list.
// The vectors to handle for this outer loop are in
// Ah [akstart:akend-1].
akend = akstart ;
int64_t pright = anvec - 1 ;
GB_split_binary_search (avend, Ah, Aj_is_32, &akend, &pright) ;
ASSERT (GB_IMPLIES (akstart <= akend-1,
GB_IGET (Ah, akend-1) < avend)) ;
}
else
{
// A is sparse; the vectors to handle are akstart:akend-1
akend = avend ;
}
// # of vectors in all tiles in this outer loop
int64_t cnvec = akend - akstart ;
int nth = GB_nthreads (cnvec, chunk, nthreads_max) ;
//----------------------------------------------------------------------
// create all tiles for vectors akstart:akend-1 in A
//----------------------------------------------------------------------
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
//------------------------------------------------------------------
// allocate C, C->p, and C->h for this tile
//------------------------------------------------------------------
const int64_t aistart = Tile_vlen [inner] ;
const int64_t aiend = Tile_vlen [inner+1] ;
const int64_t cvdim = avend - avstart ;
const int64_t cvlen = aiend - aistart ;
// Assume this tile C can acquire all the entries of A to determine
// the p_is_32, j_is_32, and i_is_32 settings for the new Tile.
bool Cp_is_32, Cj_is_32, Ci_is_32 ;
GB_determine_pji_is_32 (&Cp_is_32, &Cj_is_32, &Ci_is_32,
A_sparsity, anz, cvlen, cvdim, Werk) ;
C = NULL ;
GB_OK (GB_new (&C, // new header
atype, cvlen, cvdim, GB_ph_malloc, csc, A_sparsity,
hyper_switch, cnvec, Cp_is_32, Cj_is_32, Ci_is_32)) ;
C->sparsity_control = sparsity_control ;
C->hyper_switch = hyper_switch ;
C->nvec = cnvec ;
GB_Cp_DECLARE (Cp, ) ; GB_Ap_PTR (Cp, C) ;
GB_Ch_DECLARE (Ch, ) ; GB_Ah_PTR (Ch, C) ;
//------------------------------------------------------------------
// determine the boundaries of this tile
//------------------------------------------------------------------
int64_t k ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (k = akstart ; k < akend ; k++)
{
const int64_t pC_start = GB_IGET (Wp, k) ;
int64_t pA = pC_start ;
const int64_t pA_end = GB_IGET (Ap, k+1) ;
const int64_t aknz = pA_end - pA ;
if (aknz == 0 || GB_IGET (Ai, pA) >= aiend)
{
// this vector of C is empty
}
else if (aknz > 256)
{
// use binary search to find aiend
int64_t pright = pA_end - 1 ;
GB_split_binary_search (aiend, Ai, Ai_is_32, &pA, &pright) ;
#ifdef GB_DEBUG
// check the results with a linear search
int64_t p2 = pC_start ;
for ( ; p2 < pA_end ; p2++)
{
if (GB_IGET (Ai, p2) >= aiend) break ;
}
ASSERT (pA == p2) ;
#endif
}
else
{
// use a linear-time search to find aiend
for ( ; pA < pA_end ; pA++)
{
if (GB_IGET (Ai, pA) >= aiend) break ;
}
#ifdef GB_DEBUG
// check the results with a binary search
int64_t p2 = pC_start ;
int64_t p2_end = pA_end - 1 ;
GB_split_binary_search (aiend, Ai, Ai_is_32, &p2, &p2_end) ;
ASSERT (pA == p2) ;
#endif
}
int64_t kC = k - akstart ;
int64_t cknz = pA - pC_start ; // # entries in C(:,kC)
GB_ISET (Cp, kC, cknz) ; // Cp [kC] = cknz ;
if (A_is_hyper)
{
int64_t jC = GB_IGET (Ah, k) - avstart ;
GB_ISET (Ch, kC, jC) ; // Ch [kC] = jC ;
}
}
int64_t nvec_nonempty ;
GB_cumsum (Cp, Cp_is_32, cnvec, &nvec_nonempty, nth, Werk) ;
GB_nvec_nonempty_set (C, nvec_nonempty) ;
int64_t cnz = GB_IGET (Cp, cnvec) ;
//------------------------------------------------------------------
// allocate C->i and C->x for this tile
//------------------------------------------------------------------
GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, A_iso)) ;
GB_Ci_DECLARE (Ci, ) ; GB_Ci_PTR (Ci, C) ;
C->nvals = cnz ;
C->magic = GB_MAGIC ; // for GB_nnz_held(C), to slice C
//------------------------------------------------------------------
// copy the tile from A into C
//------------------------------------------------------------------
int C_ntasks, C_nthreads ;
GB_SLICE_MATRIX (C, 8) ;
info = GrB_NO_VALUE ;
if (A_iso)
{
//--------------------------------------------------------------
// split an iso matrix A into an iso tile C
//--------------------------------------------------------------
// A is iso and so is C; copy the iso entry
GBURBLE ("(iso sparse split) ") ;
memcpy (C->x, A->x, asize) ;
#define GB_ISO_SPLIT
#define GB_COPY(pC,pA) ;
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
}
else
{
//--------------------------------------------------------------
// split a non-iso matrix A into an non-iso tile C
//--------------------------------------------------------------
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
// no typecasting needed
switch (asize)
{
#undef GB_COPY
#define GB_COPY(pC,pA) Cx [pC] = Ax [pA] ;
case GB_1BYTE : // uint8, int8, bool, or 1-byte user
#define GB_C_TYPE uint8_t
#define GB_A_TYPE uint8_t
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
break ;
case GB_2BYTE : // uint16, int16, or 2-byte user-defined
#define GB_C_TYPE uint16_t
#define GB_A_TYPE uint16_t
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
break ;
case GB_4BYTE : // uint32, int32, float, or 4-byte user
#define GB_C_TYPE uint32_t
#define GB_A_TYPE uint32_t
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
break ;
case GB_8BYTE : // uint64, int64, double, float complex,
// or 8-byte user defined
#define GB_C_TYPE uint64_t
#define GB_A_TYPE uint64_t
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
break ;
case GB_16BYTE : // double complex or 16-byte user
#define GB_C_TYPE GB_blob16
#define GB_A_TYPE GB_blob16
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
break ;
default:;
}
}
#endif
}
//------------------------------------------------------------------
// via the JIT or PreJIT kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
struct GB_UnaryOp_opaque op_header ;
GB_Operator op = GB_unop_identity (atype, &op_header) ;
ASSERT_OP_OK (op, "identity op for split sparse", GB0) ;
info = GB_split_sparse_jit (C, op, A, akstart, aistart, Wp,
C_ek_slicing, C_ntasks, C_nthreads) ;
}
//------------------------------------------------------------------
// via the generic kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GBURBLE ("(generic split) ") ;
#define GB_C_TYPE GB_void
#define GB_A_TYPE GB_void
#undef GB_COPY
#define GB_COPY(pC,pA) \
memcpy (Cx + (pC)*asize, Ax +(pA)*asize, asize) ;
#include "split/template/GB_split_sparse_template.c"
info = GrB_SUCCESS ;
}
//------------------------------------------------------------------
// free workspace
//------------------------------------------------------------------
GB_WERK_POP (C_ek_slicing, int64_t) ;
GB_OK (info) ;
//------------------------------------------------------------------
// advance to the next tile
//------------------------------------------------------------------
if (inner < ninner - 1)
{
int64_t k ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (k = akstart ; k < akend ; k++)
{
int64_t ck = k - akstart ;
int64_t cknz = GB_IGET (Cp, ck+1) - GB_IGET (Cp, ck) ;
GB_IINC (Wp, k, cknz) ; // Wp [k] += cknz ;
}
}
//------------------------------------------------------------------
// conform the tile and save it in the Tiles array
//------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C for GB_split", GB0) ;
GB_OK (GB_hyper_prune (C, Werk)) ;
GB_OK (GB_conform (C, Werk)) ;
if (csc)
{
GB_TILE (Tiles, inner, outer) = C ;
}
else
{
GB_TILE (Tiles, outer, inner) = C ;
}
ASSERT_MATRIX_OK (C, "final tile C for GB_split", GB0) ;
C = NULL ;
}
}
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
|