1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
//------------------------------------------------------------------------------
// GB_transpose_bucket_template: transpose and typecast and/or apply operator
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Symbolic phase for GB_transpose_bucket.
{
GB_Cp_TYPE *restrict Cp = C->p ;
int64_t nvec_nonempty ;
if (nthreads == 1)
{
//----------------------------------------------------------------------
// sequential method: A is not sliced
//----------------------------------------------------------------------
// Only requires a single workspace of size avlen for a single thread.
// The resulting C matrix is not jumbled.
GBURBLE ("(1-thread bucket transpose) ") ;
// compute the row counts of A. No need to scan the A->p pointers
ASSERT (nworkspaces == 1) ;
GB_Cp_TYPE *restrict workspace = Workspaces [0] ;
memset (workspace, 0, (avlen + 1) * sizeof (GB_Cp_TYPE)) ;
for (int64_t p = 0 ; p < anz ; p++)
{
int64_t i = GB_IGET (Ai, p) ;
workspace [i]++ ;
}
// cumulative sum of the workspace, and copy back into C->p
GB_cumsum (workspace, Cp_is_32, avlen, &nvec_nonempty, 1, NULL) ;
memcpy (Cp, workspace, (avlen + 1) * sizeof (GB_Cp_TYPE)) ;
}
else if (nworkspaces == 1)
{
//----------------------------------------------------------------------
// atomic method: A is sliced but workspace is shared
//----------------------------------------------------------------------
// Only requires a single workspace of size avlen, shared by all
// threads. Scales well, but requires atomics. If the # of rows is
// very small and the average row degree is high, this can be very slow
// because of contention on the atomic workspace. Otherwise, it is
// typically faster than the non-atomic method. The resulting C matrix
// is jumbled.
GBURBLE ("(%d-thread atomic bucket transpose) ", nthreads) ;
// compute the row counts of A. No need to scan the A->p pointers
GB_Cp_TYPE *restrict workspace = Workspaces [0] ;
GB_memset (workspace, 0, (avlen + 1) * sizeof (GB_Cp_TYPE), nth) ;
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
int64_t i = GB_IGET (Ai, p) ;
// update workspace [i]++ automically:
GB_ATOMIC_UPDATE
workspace [i]++ ;
}
C->jumbled = true ; // atomic transpose leaves C jumbled
// cumulative sum of the workspace, and copy back into C->p
GB_cumsum (workspace, Cp_is_32, avlen, &nvec_nonempty, nth, Werk) ;
GB_memcpy (Cp, workspace, (avlen + 1) * sizeof (GB_Cp_TYPE), nth) ;
}
else
{
//----------------------------------------------------------------------
// non-atomic method
//----------------------------------------------------------------------
// compute the row counts of A for each slice, one per thread; This
// method is parallel, but not highly scalable. Each thread requires
// workspace of size avlen, but no atomics are required. The resulting
// C matrix is not jumbled, so this can save work if C needs to be
// unjumbled later.
GBURBLE ("(%d-thread non-atomic bucket transpose) ", nthreads) ;
ASSERT (nworkspaces == nthreads) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
// get the row counts for this slice, of size A->vlen
GB_Cp_TYPE *restrict workspace = Workspaces [tid] ;
memset (workspace, 0, (avlen + 1) * sizeof (GB_Cp_TYPE)) ;
for (int64_t k = A_slice [tid] ; k < A_slice [tid+1] ; k++)
{
// iterate over the entries in A(:,j); j not itself not needed
int64_t pA_start = GB_IGET (Ap, k) ;
int64_t pA_end = GB_IGET (Ap, k+1) ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// count one more entry in C(i,:) for this slice
int64_t i = GB_IGET (Ai, pA) ;
workspace [i]++ ;
}
}
}
// cumulative sum of the workspaces across the slices
int64_t i ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (i = 0 ; i < avlen ; i++)
{
GB_Cp_TYPE s = 0 ;
for (int tid = 0 ; tid < nthreads ; tid++)
{
GB_Cp_TYPE *restrict workspace = Workspaces [tid] ;
GB_Cp_TYPE c = workspace [i] ;
workspace [i] = s ;
s += c ;
}
Cp [i] = s ;
}
Cp [avlen] = 0 ;
//----------------------------------------------------------------------
// compute the vector pointers for C
//----------------------------------------------------------------------
GB_cumsum (Cp, Cp_is_32, avlen, &nvec_nonempty, nth, Werk) ;
//----------------------------------------------------------------------
// add Cp back to all Workspaces
//----------------------------------------------------------------------
#pragma omp parallel for num_threads(nth) schedule(static)
for (i = 0 ; i < avlen ; i++)
{
GB_Cp_TYPE s = Cp [i] ;
GB_Cp_TYPE *restrict workspace = Workspaces [0] ;
workspace [i] = s ;
for (int tid = 1 ; tid < nthreads ; tid++)
{
GB_Cp_TYPE *restrict workspace = Workspaces [tid] ;
workspace [i] += s ;
}
}
}
GB_nvec_nonempty_set (C, nvec_nonempty) ;
}
#undef GB_Cp_TYPE
|