File: test127.m

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (269 lines) | stat: -rw-r--r-- 8,290 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
function test127
%TEST127 test GrB_eWiseAdd and GrB_eWiseMult (all types and operators)

% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0

[binops, ~, ~, types, ~, ~] = GB_spec_opsall ;
binops = binops.all ;
types = types.all ;

fprintf ('test127 -----------tests of GrB_eWiseAdd and eWiseMult (all ops)\n') ;

m = 5 ;
n = 5 ;

rng ('default') ;

dnn = struct ;
dtn = struct ( 'inp0', 'tran' ) ;
dnt = struct ( 'inp1', 'tran' ) ;
dtt = struct ( 'inp0', 'tran', 'inp1', 'tran' ) ;
dnn_notM = struct ('mask', 'complement') ;

Amat2 = sparse (2 * sprand (m,n, 0.8)) ;
Bmat2 = sparse (2 * sprand (m,n, 0.8)) ;
Cmat2 = sparse (2 * sprand (m,n, 0.8)) ;
w2 = sparse (2 * sprand (m,1, 0.8)) ;
uvec2 = sparse (2 * sprand (m,1, 0.8)) ;
vvec2 = sparse (2 * sprand (m,1, 0.8)) ;

Amat = sparse (100 * sprandn (m,n, 0.8)) ;
Bmat = sparse (100 * sprandn (m,n, 0.8)) ;
Cmat = sparse (100 * sprandn (m,n, 0.8)) ;
w = sparse (100 * sprandn (m,1, 0.8)) ;
uvec = sparse (100 * sprandn (m,1, 0.8)) ;
vvec = sparse (100 * sprandn (m,1, 0.8)) ;

Maskmat = sprandn (m,n,0.9) ~= 0 ;
maskvec = sprandn (m,1,0.9) ~= 0 ;

% create a very sparse matrix mask
Maskmat2 = sparse (m,n) ;
T = Amat .* Bmat ;
[i j x] = find (T) ;
if (length (i) > 0)
    Maskmat2 (i(1), j(1)) = 1 ;
end
T = (Amat ~= 0) & (Bmat == 0) ;
[i j x] = find (T) ;
if (length (i) > 0)
    Maskmat2 (i(1), j(1)) = 1 ;
end
T = (Amat == 0) & (Bmat ~= 0) ;
[i j x] = find (T) ;
if (length (i) > 0)
    Maskmat2 (i(1), j(1)) = 1 ;
end
clear T i j x

% create a very sparse vector mask
maskvec2 = sparse (m,1) ;
T = uvec .* vvec ;
[i j x] = find (T) ;
if (length (i) > 0)
    maskvec2 (i(1), j(1)) = 1 ;
end
T = (uvec ~= 0) & (vvec == 0) ;
[i j x] = find (T) ;
if (length (i) > 0)
    maskvec2 (i(1), j(1)) = 1 ;
end
T = (uvec == 0) & (vvec ~= 0) ;
[i j x] = find (T) ;
if (length (i) > 0)
    maskvec2 (i(1), j(1)) = 1 ;
end
clear T i j x

ATmat = Amat' ;
BTmat = Bmat' ;

ATmat2 = Amat2.' ;
BTmat2 = Bmat2.' ;

M_is_very_sparse = 0 ;
M_is_csc   = 0 ;
A_is_csc   = 0 ;
B_is_csc   = 0 ;
C_is_csc   = 0 ;
C_sparsity_control = 0 ;
M_sparsity_control = 0 ;

for k2 = 1:length(binops)
    binop = binops {k2}  ;

    for k1 = 1:length (types)
        type = types {k1}  ;

        op.opname = binop ;
        op.optype = type ;
        try
            GB_spec_operator (op) ;
        catch
            continue ;
        end

        if (test_contains (type, 'single'))
            tol = 1e-5 ;
        elseif (test_contains (type, 'double'))
            tol = 1e-12 ;
        else
            tol = 0 ;
        end

        for A_sparsity_control = 0:1
            for B_sparsity_control = 0:1

                if (A_sparsity_control == 1 && B_sparsity_control == 0)
                    continue ;
                end

                %---------------------------------------------------------------
                % create the test matrices
                %---------------------------------------------------------------

                if (A_sparsity_control == 0)
                    A_is_hyper = 0 ; % not hyper
                    A_sparsity = 1 ; % sparse
                else
                    A_is_hyper = 0 ; % not hyper
                    A_sparsity = 4 ; % bitmap
                end

                if (B_sparsity_control == 0)
                    B_is_hyper = 0 ; % not hyper
                    B_sparsity = 1 ; % sparse
                else
                    B_is_hyper = 0 ; % not hyper
                    B_sparsity = 4 ; % bitmap
                end

                if (C_sparsity_control == 0)
                    C_is_hyper = 0 ; % not hyper
                    C_sparsity = 1 ; % sparse
                else
                    C_is_hyper = 0 ; % not hyper
                    C_sparsity = 4 ; % bitmap
                end

                clear A AT B BT C u v

                if (isequal (binop, 'pow'))
                    A.matrix = Amat2 ;
                    AT.matrix = ATmat2 ;
                    B.matrix = Bmat2 ;
                    BT.matrix = BTmat2 ;
                    C.matrix = Cmat2 ;
                    u.matrix = uvec2 ;
                    v.matrix = vvec2 ;
                else
                    A.matrix = Amat ;
                    AT.matrix = ATmat ;
                    B.matrix = Bmat ;
                    BT.matrix = BTmat ;
                    C.matrix = Cmat ;
                    u.matrix = uvec ;
                    v.matrix = vvec ;
                end

                A.is_hyper = A_is_hyper ;
                A.is_csc   = A_is_csc   ;
                A.sparsity = A_sparsity ;
                A.class = op.optype ;

                AT.is_hyper = A_is_hyper ;
                AT.sparsity = A_sparsity ;
                AT.is_csc   = A_is_csc   ;
                AT.class = op.optype ;

                B.is_hyper = B_is_hyper ;
                B.sparsity = B_sparsity ;
                B.is_csc   = B_is_csc   ;
                B.class = op.optype ;

                BT.is_hyper = B_is_hyper ;
                BT.sparsity = B_sparsity ;
                BT.is_csc   = B_is_csc   ;
                BT.class = op.optype ;

                C.is_hyper = C_is_hyper ;
                C.is_csc   = C_is_csc   ;
                C.sparsity = C_sparsity ;

                u.is_csc = true ;
                u.class = op.optype ;

                v.is_csc = true ;
                v.class = op.optype ;

                clear Mask mask
                if (M_is_very_sparse)
                    Mask.matrix = Maskmat2 ;
                    mask.matrix = maskvec2 ;
                else
                    Mask.matrix = Maskmat ;
                    mask.matrix = maskvec ;
                end

                if (M_sparsity_control == 0)
                    M_is_hyper = 0 ; % not hyper
                    M_sparsity = 1 ; % sparse
                else
                    M_is_hyper = 0 ; % not hyper
                    M_sparsity = 4 ; % bitmap
                end

                Mask.is_hyper = M_is_hyper ;
                Mask.sparsity = M_sparsity ;
                Mask.is_csc   = M_is_csc   ;
                mask.is_csc = true ;

                %---------------------------------------------------------------
                % A+B
                %---------------------------------------------------------------

                C0 = GB_spec_Matrix_eWiseAdd (C, [ ], [ ], op, A, B, dnn) ;
                C1 = GB_mex_Matrix_eWiseAdd  (C, [ ], [ ], op, A, B, dnn) ;
                GB_spec_compare (C0, C1, 0, tol) ;

                %---------------------------------------------------------------
                % A.*B
                %---------------------------------------------------------------

                C0 = GB_spec_Matrix_eWiseMult (C, [ ], [ ], op, A, B, dnn) ;
                C1 = GB_mex_Matrix_eWiseMult  (C, [ ], [ ], op, A, B, dnn) ;
                GB_spec_compare (C0, C1, 0, tol) ;

                %---------------------------------------------------------------
                % A'.*B
                %---------------------------------------------------------------

                C0 = GB_spec_Matrix_eWiseMult (C, [ ], [ ], op, AT, B, dtn) ;
                C1 = GB_mex_Matrix_eWiseMult  (C, [ ], [ ], op, AT, B, dtn) ;
                GB_spec_compare (C0, C1, 0, tol) ;

                %---------------------------------------------------------------
                % B.*A'
                %---------------------------------------------------------------

                C0 = GB_spec_Matrix_eWiseMult (C, [ ], [ ], op, B, AT, dnt) ;
                C1 = GB_mex_Matrix_eWiseMult  (C, [ ], [ ], op, B, AT, dnt) ;
                GB_spec_compare (C0, C1, 0, tol) ;

                %---------------------------------------------------------------
                % A.*B, with mask
                %---------------------------------------------------------------

                C0 = GB_spec_Matrix_eWiseMult (C, Mask, [ ], op, A, B, dnn) ;
                C1 = GB_mex_Matrix_eWiseMult  (C, Mask, [ ], op, A, B, dnn) ;
                GB_spec_compare (C0, C1, 0, tol) ;

            end
        end
    end
    fprintf ('.') ;
end

fprintf ('\ntest127: all tests passed\n') ;