File: dnn_demo.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (578 lines) | stat: -rw-r--r-- 22,822 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
//------------------------------------------------------------------------------
// dnn_demo: run all neural networks from http://graphchallenge.org
//------------------------------------------------------------------------------

// LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
// SPDX-License-Identifier: BSD-2-Clause
//
// For additional details (including references to third party source code and
// other files) see the LICENSE file or contact permission@sei.cmu.edu. See
// Contributors.txt for a full list of contributors. Created, in part, with
// funding and support from the U.S. Government (see Acknowledgments.txt file).
// DM22-0790

// Contributed by Tim Davis, Texas A&M University.

//------------------------------------------------------------------------------

// dnn_demo: test for LAGraph_dnn.

// Usage: ./dnn_demo nproblems

// nproblems is the # of test problems to solve.  If not present, it defaults
// to 12 (run all 12 DNN's).  The problems are solved in order from small to
// big.  The Makefile just runs the first and smallest problem.

#include "LG_internal.h"
#include <LAGraph.h>
#include <LAGraphX.h>

#define LG_XSTR(x) LG_STR(x)
#define LG_STR(x) #x
#define LG_SOURCE_DIR LG_XSTR (LGDIR)

//****************************************************************************
/**
 * LAGraph_tsvread: read a matrix from a tsv file
 *
 * Each line in the file specifies a single entry: i, j, x.
 * The indices i and j are assumed to be one-based.  The dimensions of the
 * matrix must be provided by the caller.  This format is used for matrices at
 * http://graphchallenge.org.  The Matrix Market format is recommended instead;
 * it is more flexible and easier to use, since that format includes the matrix
 * type and size in the file itself.  See LAGraph_mmread and LAGraph_mmwrite.
 *
 * @param[out]  A       Matrix read from the file. It is allocated by this
 *                      method
 * @param[in]   f       A handle to an open file containing the tsv data
 * @param[in]   type    The type of the matrix to create (casting may occur?)
 * @param[in]   nrows   Number of rows to set in the matrix
 * @param[in]   ncols   Number of cols to set in the matrix
 *
 * @retval  0   If operation finishes successfully (GrB_SUCCESS)
 * @return  Various GrB error codes from different issues: null pointer, out
 *          of memory, etc.
 */
int LAGraph_tsvread
(
    GrB_Matrix *A,
    FILE       *f,
    GrB_Type    type,
    GrB_Index   nrows,
    GrB_Index   ncols,
    char *msg
) ;

//------------------------------------------------------------------------------
// LAGraph_tsvread: read a tsv file
//------------------------------------------------------------------------------

// LAGraph_tsvread: read a tsv file.  Contributed by Tim Davis, Texas A&M
// University.

// Reads a tsv file.  Each line in the file specifies a single entry: i, j, x.
// The indices i and j are assumed to be one-based.  The dimensions of the
// matrix must be provided by the caller.  This format is used for matrices at
// http://graphchallenge.org.  The Matrix Market format is recommended instead;
// it is more flexible and easier to use, since that format includes the matrix
// type and size in the file itself.  See LAGraph_mmread and LAGraph_mmwrite.

// Only needed by the dnn_demo so it is only included here.

#undef  LG_FREE_ALL
#define LG_FREE_ALL GrB_free (Chandle) ;

int LAGraph_tsvread
(
    GrB_Matrix *Chandle,        // C, created on output
    FILE *f,                    // file to read from (already open)
    GrB_Type type,              // the type of C to create
    GrB_Index nrows,            // C is nrows-by-ncols
    GrB_Index ncols,
    char *msg
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    if (Chandle == NULL || f == NULL)
    {
        return (GrB_NULL_POINTER) ;
    }

    //--------------------------------------------------------------------------
    // create the output matrix
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GrB_Matrix C = NULL ;
    (*Chandle) = NULL ;
    GRB_TRY (GrB_Matrix_new (&C, type, nrows, ncols)) ;

    //--------------------------------------------------------------------------
    // read the entries
    //--------------------------------------------------------------------------

    GrB_Index i, j ;

    if (type == GrB_INT64)
    {

        //----------------------------------------------------------------------
        // read the entries as int64
        //----------------------------------------------------------------------

        int64_t x ;
        while (fscanf (f, "%"PRIu64"%"PRIu64"%"PRId64"\n", &i, &j, &x) != EOF)
        {
            GRB_TRY (GrB_Matrix_setElement (C, x, i-1, j-1)) ;
        }

    }
    else if (type == GrB_UINT64)
    {

        //----------------------------------------------------------------------
        // read the entries as uint64
        //----------------------------------------------------------------------

        uint64_t x ;
        while (fscanf (f, "%"PRIu64"%"PRIu64"%"PRIu64"\n", &i, &j, &x) != EOF)
        {
            GRB_TRY (GrB_Matrix_setElement (C, x, i-1, j-1)) ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // read the entries as double, and typecast to the matrix type
        //----------------------------------------------------------------------

        double x ;
        while (fscanf (f, "%"PRIu64"%"PRIu64"%lg\n", &i, &j, &x) != EOF)
        {
            GRB_TRY (GrB_Matrix_setElement (C, x, i-1, j-1)) ;
        }
    }

    //--------------------------------------------------------------------------
    // finalize the matrix and return the result
    //--------------------------------------------------------------------------

    GrB_Index ignore ;
    GRB_TRY (GrB_Matrix_nvals (&ignore, C)) ;
    (*Chandle) = C ;
    return (GrB_SUCCESS) ;
}

//------------------------------------------------------------------------------
// dnn_demo main program
//------------------------------------------------------------------------------

#undef  LG_FREE_ALL
#define LG_FREE_ALL ;

int main (int argc, char **argv)
{

    //--------------------------------------------------------------------------
    // start LAGraph and GraphBLAS
    //--------------------------------------------------------------------------

    GrB_Info info ;
    char msg [LAGRAPH_MSG_LEN] ;
    LG_TRY (LAGraph_Init (NULL)) ;

    //--------------------------------------------------------------------------
    // problem size definitions
    //--------------------------------------------------------------------------

    // The 12 problems and their sizes are hard-coded below.

    // It would be better to define these from the input files, but the problem
    // data files are not formatted in a way that makes this easy to do.  A
    // Matrix Market file format would be better (which can specify the type
    // and size of each matrix), with the additional of a problem specification
    // file that defines each of the 12 problems to solve.

    // Each problem is defined by a set of files in the DNN_DATA directory,
    // which can be obtained from http://graphchallenge.org .  The simplest way
    // to redefine the location of the data files is to make ./dnn_data a
    // symbolic link, and leave DNN_DATA unchanged.  The .gitignore file will
    // prevent dnn_data from syncing to github, so you could also simply change
    // ./dnn_data to a true directory and place all files there.  Or, change
    // the DNN_DATA macro to point to your data files.

    #define DNN_DATA LG_SOURCE_DIR "/../dnn_data"

    // Each of the 12 problems is defined by the # of neurons at each layer, N
    // = (1024, 4096, 16384, 65536), and the # of layers, L = (120, 480, or
    // 1920).  Each problem has the same number of features (F = 60000).  The
    // input files for a given problem (N,L) are as follows:

    // Input feature vectors: an F-by-N sparse matrix
    //      ./dnn_data/MNIST/sparse-images-(N).tsv
    // Neural network layers, for i = 1 to L, each an N-by-N sparse matrix:
    //      ./dnn_data/DNN/neuron(N)/n(N)-l(i).tsv
    // True categories, a list of integers, one per line:
    //      ./dnn_data/DNN/neuron(N)-l(L)-categories.tsv

    // The Bias vectors are defined with the single scalar, neuralNetBias[ ],
    // with one scalar for each value of N.  This scalar is used to construct
    // the diagonal Bias matrices for each layer.  All the layers share the
    // same matrix, but they are treated as different matrices here.  In a more
    // general problem, the Bias matrices would differ for each layer and
    // perhaps for each neuron.  As a result, this test is not permitted to
    // exploit the fact that all neurons are biased the same way.

    // Note that for a given number of neurons, N, each of the 3 problems for
    // different layers shares the same weight matrices for the first layers.
    // That is, the first 120 layers of the (1024,480) problem are the same as
    // the 120 layers of the (1024,120) problem.  This is not exploited in
    // LAGraph_dnn, but it is exploited here, simply to reduce the time to load
    // the problems.

    #define FILENAME_LEN 1024
    char filename [FILENAME_LEN] ;

    #define NMAXLAYERS 3
    int maxLayers [NMAXLAYERS] = { 120, 480, 1920 } ;

//  #define NMAXNEURONS 1
//  int Nneurons [NMAXNEURONS] = { 65536 } ;
//  double neuralNetBias [NMAXNEURONS] = { -0.45 } ;

    #define NMAXNEURONS 4
    int Nneurons [NMAXNEURONS] = { 1024, 4096, 16384, 65536 } ;
    double neuralNetBias [NMAXNEURONS] = { -0.3, -0.35, -0.4, -0.45 } ;

    int nfeatures = 60000 ;

    GrB_Matrix Y0 = NULL, Y = NULL, W [65536], Bias [65536] ;
    GrB_Vector TrueCategories = NULL, Categories = NULL, C = NULL ;

    for (int layer = 0 ; layer < 65536 ; layer++)
    {
        W [layer] = NULL ;
        Bias [layer] = NULL ;
    }

    #undef  LG_FREE_ALL
    #define LG_FREE_ALL                                 \
    {                                                   \
        GrB_free (&TrueCategories) ;                    \
        GrB_free (&Categories) ;                        \
        GrB_free (&C) ;                                 \
        GrB_free (&Y) ;                                 \
        GrB_free (&Y0) ;                                \
        for (int layer = 0 ; layer < 65536 ; layer++)   \
        {                                               \
            GrB_free (& (W [layer])) ;                  \
            GrB_free (& (Bias [layer])) ;               \
        }                                               \
    }

    // select the type.  GrB_FP32 is faster and passes all the tests.
//  GrB_Type type = GrB_FP64 ;
    GrB_Type type = GrB_FP32 ;

    printf ("type: ") ;
    if (type == GrB_FP64) printf ("double\n") ; else printf ("float\n") ;

    // get the max # of threads that can be used
    int nthreads_max, nthreads_outer, nthreads_inner ;
    LG_TRY (LAGraph_GetNumThreads (&nthreads_outer, &nthreads_inner, msg)) ;
    nthreads_max = nthreads_outer * nthreads_inner ;
    printf ("max # of nthreads: %d\n", nthreads_max) ;

    #define NNTHREADS 12
    int nthreads_list [NNTHREADS] =
        { 1, 2, 4, 8, 16, 20, 32, 40, 64, 128, 160, 256 } ;

//  #define NNTHREADS 1
//  int nthreads_list [NNTHREADS] = { 40 } ;

    // determine the # of problems to solve
    int nproblems = NMAXNEURONS * NMAXLAYERS ;
    if (argc > 1)
    {
        sscanf (argv [1], "%d", &nproblems) ;
    }
    printf ("# of problems to solve: %d\n", nproblems) ;
    int problem = 0 ;

    //--------------------------------------------------------------------------
    // run all problems
    //--------------------------------------------------------------------------

    for (int kn = 0 ; kn < NMAXNEURONS ; kn++)
    {

        //----------------------------------------------------------------------
        // check if this problem is to be solved
        //----------------------------------------------------------------------

        if (problem > nproblems) continue ;


        //----------------------------------------------------------------------
        // get the number of nneurons and neural bias
        //----------------------------------------------------------------------

        double t = LAGraph_WallClockTime ( ) ;

        int nneurons = Nneurons [kn] ;
        double b = neuralNetBias [kn] ;
        printf ("\n# neurons: %d bias: %g\n", nneurons, b) ;

        //----------------------------------------------------------------------
        // read in the initial feature vectors
        //----------------------------------------------------------------------

        sprintf (filename, "%s/MNIST/sparse-images-%d.tsv", DNN_DATA, nneurons);
        FILE *f = fopen (filename, "r") ;
        if (!f) { printf ("cannot open %s\n", filename) ; abort ( ) ; }
        LG_TRY (LAGraph_tsvread (&Y0, f, type, nfeatures, nneurons, msg)) ;
        fclose (f) ;
        t = LAGraph_WallClockTime ( ) - t ;

        printf ("# features: %g read time: %g sec\n", (double) nfeatures, t) ;
        GrB_Index nvals ;
        GRB_TRY (GrB_Matrix_nvals (&nvals, Y0)) ;
        printf ("# entries in Y0: %g million\n", (double) nvals / 1e6) ;
        fflush (stdout) ;

        //----------------------------------------------------------------------
        // run each problem size (for all #'s of layers)
        //----------------------------------------------------------------------

        for (int kl = 0 ; kl < NMAXLAYERS ; kl++)
        {

            //------------------------------------------------------------------
            // check if this problem is to be solved
            //------------------------------------------------------------------

            problem++ ;
            if (problem > nproblems) continue ;

            //------------------------------------------------------------------
            // get the number of layers in this neural net
            //------------------------------------------------------------------

            int nlayers = maxLayers [kl] ;
            printf ("\n--------------------------------------"
                "neurons per layer: %d layers: %d\n", nneurons, nlayers) ;

            //------------------------------------------------------------------
            // read in the layers in parallel
            //------------------------------------------------------------------

            double t = LAGraph_WallClockTime ( ) ;
            int first_layer = (kl == 0) ? 0 : maxLayers [kl-1] ;
            bool ok = true ;

            // assume the I/O system can handle 2-way parallelism
            int layer;
            #pragma omp parallel for schedule(dynamic,1) reduction(&&:ok) \
                num_threads (2)
            for (layer = first_layer ; layer < nlayers ; layer++)
            {
                // read the neuron layer: W [layer]
                char my_filename [1024] ;
                sprintf (my_filename, "%s/DNN/neuron%d/n%d-l%d.tsv", DNN_DATA,
                    nneurons, nneurons, layer+1) ;
                FILE *my_file = fopen (my_filename, "r") ;

                bool my_ok = true ;
                if (!my_file)
                {
                    printf ("cannot open %s\n", my_filename) ;
                    my_ok = false ;
                    continue ;
                }

                GrB_Info my_info = LAGraph_tsvread (&(W [layer]), my_file,
                    type, nneurons, nneurons, msg) ;
                fclose (my_file) ;
                my_ok = my_ok && (my_info == GrB_SUCCESS) ;

                // construct the bias matrix: Bias [layer].  Note that all Bias
                // matrices are the same for all layers, and all diagonal
                // entries are also the same, but this test must not exploit
                // that fact.
                my_info = GrB_Matrix_new (&(Bias [layer]), type,
                    nneurons, nneurons) ;
                my_ok = my_ok && (my_info == GrB_SUCCESS) ;
                for (int i = 0 ; i < nneurons ; i++)
                {
                    my_info = GrB_Matrix_setElement (Bias [layer], b, i, i) ;
                    my_ok = my_ok && (my_info == GrB_SUCCESS) ;
                }
                GrB_Index ignore ;
                my_info = GrB_Matrix_nvals (&ignore, Bias [layer]) ;
                my_ok = my_ok && (my_info == GrB_SUCCESS) ;
                ok = ok && my_ok ;
            }

            if (!ok)
            {
                printf ("neural read failure\n") ;
                abort ( ) ;
            }

            t = LAGraph_WallClockTime ( ) - t ;
            printf ("read net time %g sec\n", t) ;

            double nedges = 0 ;
            for (layer = 0 ; layer < nlayers ; layer++)
            {
                GrB_Index nvals ;
                GRB_TRY (GrB_Matrix_nvals (&nvals, W [layer])) ;
                nedges += nvals ;
            }
            printf ("# edges in all layers: %g million\n\n",
                (double) nedges / 1e6) ;
            fflush (stdout) ;

            // read TrueCategories as a boolean nfeatures-by-1 vector
            GRB_TRY (GrB_Vector_new (&TrueCategories, GrB_BOOL,
                nfeatures)) ;
            sprintf (filename, "%s/DNN/neuron%d-l%d-categories.tsv", DNN_DATA,
                nneurons, nlayers) ;
            f = fopen (filename, "r") ;
            bool check_result = (f != NULL) ;
            if (check_result)
            {
                while (1)
                {
                    int category ;
                    if (fscanf (f, "%d\n", &category) == EOF) break ;
                    GRB_TRY (GrB_Vector_setElement (TrueCategories,
                        (bool) true, category-1)) ;
                }
                fclose (f) ;
            }
            else
            {
                printf ("cannot open %s\n", filename) ;
                abort ( ) ;
            }

            //------------------------------------------------------------------
            // solve the problem with 1, 2, 4, ..., nthreads_max threads
            //------------------------------------------------------------------

            double t1 = 0, tcheck = 0 ;
            GrB_Index final_ynvals ;

            for (int kth = 0 ; kth < NNTHREADS ; kth++)
            {

                //--------------------------------------------------------------
                // set the # of threads to use
                //--------------------------------------------------------------

                int nthreads = nthreads_list [kth] ;
                if (nthreads > nthreads_max) break ;
                LAGraph_SetNumThreads (1, nthreads, NULL) ;
                printf ("nthreads %3d: ", nthreads) ;
                fflush (stdout) ;

                //--------------------------------------------------------------
                // solve the problem
                //--------------------------------------------------------------

                double t = LAGraph_WallClockTime ( ) ;
                LG_TRY (LAGraph_dnn (&Y, W, Bias, nlayers, Y0)) ;
                t = LAGraph_WallClockTime ( ) - t ;

                printf ("soln time %12.2f sec", t) ;

                if (nthreads == 1)
                {
                    t1 = t ;
                    printf ("                 ") ;
                }
                else
                {
                    printf (" speedup %8.2f", t1/t) ;
                }

                double rate = ((double) nfeatures) * ((double) nedges) / t ;
                printf (" rate %10.4f (1e9 edges/sec) ", rate / 1e9) ;

                //--------------------------------------------------------------
                // check the result
                //--------------------------------------------------------------

                // this is so fast, it's hardly worth timing ...
                tcheck = LAGraph_WallClockTime ( ) ;
                GRB_TRY (GrB_Matrix_nvals (&final_ynvals, Y)) ;

                // C = sum (Y)
                GRB_TRY (GrB_Vector_new (&C, type, nfeatures)) ;
                GRB_TRY (GrB_reduce (C, NULL, NULL, GrB_PLUS_FP64, Y, NULL));
                // Categories = pattern of C
                GRB_TRY (GrB_Vector_new (&Categories, GrB_BOOL, nfeatures)) ;
                GRB_TRY (GrB_apply (Categories, NULL, NULL, GrB_ONEB_BOOL,
                    C, (bool) true, NULL)) ;

                // write out Categories, as a 1-based file
                /*
                sprintf (filename, "my_neuron%d-l%d-categories_threads%d.tsv",
                    nneurons, nlayers, nthreads) ;
                FILE *ff = fopen (filename, "w") ;
                for (int i = 0 ; i < nfeatures ; i++)
                {
                    bool c = false ;
                    GRB_TRY (GrB_Vector_extractElement (&c, Categories, i)) ;
                    if (c) fprintf (ff, "%d\n", i + 1) ;
                }
                fclose (ff) ;
                */

                if (check_result)
                {
                    // check if Categories and TrueCategories are the same
                    bool isequal ;
                    LG_TRY (LAGraph_Vector_IsEqual (&isequal,
                        TrueCategories, Categories, NULL)) ;
                    if (!isequal)
                    {
                        printf ("test failure!\n") ;
                    }
                }
                printf ("\n") ;

                GrB_free (&Categories) ; Categories = NULL;
                GrB_free (&C) ; C = NULL;
                GrB_free (&Y) ; Y = NULL;
                tcheck = LAGraph_WallClockTime ( ) - tcheck ;
            }

            printf ("\n# entries in final Y: %g million\n",
                (double) final_ynvals / 1e6) ;
            printf ("check time: %g sec\n", tcheck) ;
            LAGraph_SetNumThreads (nthreads_outer, nthreads_inner, NULL) ;
        }

        //----------------------------------------------------------------------
        // free the problem
        //----------------------------------------------------------------------

        LG_FREE_ALL ;
    }

    //--------------------------------------------------------------------------
    // finalize LAGraph and GraphBLAS
    //--------------------------------------------------------------------------

    LG_TRY (LAGraph_Finalize (NULL)) ;
    printf ("all tests passed\n") ;
    return (GrB_SUCCESS) ;
}