File: test_all.txt

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (1187 lines) | stat: -rw-r--r-- 32,765 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
profile on
test_all
 TEST_ALL test the Factorize package (factorize, inverse, and related)
 
  If you have editted the Factorize package, type "clear classes" before
  running any tests.
 
  Example
    test_all                % run all tests
    test_all (0) ;          % do not run performance tests
 
  See also <a href="matlab:help factorize">factorize</a>, <a href="matlab:help inverse">inverse</a>, <a href="matlab:help test_performance">test_performance</a>, <a href="matlab:help test_accuracy">test_accuracy</a>, <a href="matlab:help test_disp">test_disp</a>,
  <a href="matlab:help test_errors">test_errors</a>


----------Dense LU factorization:

factorize: strategy default, A has size 3-by-3, full.
factorize: try LU ... OK.
F = 
  class: factorization_lu_dense
  dense LU factorization: A(p,:) = L*U
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    U: [3x3 double]
    p: [3 2 1]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 3
  A_condest: 6.821417e+02
S = 
  class: factorization_lu_dense
  dense LU factorization: A(p,:) = L*U
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    U: [3x3 double]
    p: [3 2 1]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 3
  A_condest: 6.821417e+02
error: 0

Dense LU With an imaginary F.alpha: F = 
  class: factorization_lu_dense
  dense LU factorization: A(p,:) = L*U
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    U: [3x3 double]
    p: [3 2 1]
  is_inverse: 0
  is_ctrans: 0
  alpha: 3.14159 + (2)i
  A_rank: 3
  A_condest: 6.821417e+02
error 6.24741e-12

----------Sparse LU factorization:

factorize: strategy default, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try LU ... OK.
F = 
  class: factorization_lu_sparse
  sparse LU factorization: P*(R\A)*Q = L*U
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    U: [3x3 double]
    P: [3x3 double]
    Q: [3x3 double]
    R: [3x3 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 3
  A_condest: 1.004378e+02
S = 
  class: factorization_lu_sparse
  sparse LU factorization: P*(R\A)*Q = L*U
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    U: [3x3 double]
    P: [3x3 double]
    Q: [3x3 double]
    R: [3x3 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 3
  A_condest: 1.004378e+02
error: 3.12642e-17

----------Dense Cholesky factorization:

factorize: strategy default, A has size 3-by-3, full.
factorize: try CHOL ... OK.
F = 
  class: factorization_chol_dense
  dense Cholesky factorization: A = R'*R
  A: [3x3 double]
  Factors:
    R: [3x3 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 3
S = 
  class: factorization_chol_dense
  dense Cholesky factorization: A = R'*R
  A: [3x3 double]
  Factors:
    R: [3x3 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 3
error: 1.36648e-17

----------Sparse Cholesky factorization:

factorize: strategy default, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try CHOL ... OK.
F = 
  class: factorization_chol_sparse
  sparse Cholesky factorization: P'*A*P = L*L'
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    P: [3x3 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 3
S = 
  class: factorization_chol_sparse
  sparse Cholesky factorization: P'*A*P = L*L'
  A: [3x3 double]
  Factors:
    L: [3x3 double]
    P: [3x3 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 3
error: 1.36648e-17

----------Dense QR factorization:

factorize: strategy qr, A has size 3-by-2, full.
factorize: try QR of A ... OK.
F = 
  class: factorization_qr_dense
  dense economy QR factorization: A = Q*R
  A: [3x2 double]
  Factors:
    Q: [3x2 double]
    R: [2x2 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
S = 
  class: factorization_qr_dense
  dense economy QR factorization: A = Q*R
  A: [3x2 double]
  Factors:
    Q: [3x2 double]
    R: [2x2 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
error: 6.22897e-16

----------Dense COD factorization:

factorize: strategy default, A has size 3-by-2, full.
factorize: try COD ... OK.
F = 
  class: factorization_cod_dense
  dense COD factorization: A = U*R*V'
  A: [3x2 double]
  Factors:
    U: [3x2 double]
    R: [2x2 double]
    V: [2x2 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
S = 
  class: factorization_cod_dense
  dense COD factorization: A = U*R*V'
  A: [3x2 double]
  Factors:
    U: [3x2 double]
    R: [2x2 double]
    V: [2x2 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
error: 4.71271e-17

----------Sparse COD factorization:

factorize: strategy cod, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try COD ... OK.
F = 
  class: factorization_cod_sparse
  sparse COD factorization: A = U*R*V'
  A: [3x2 double]
  Factors:
    U: [1x1 struct]
    R: [3x2 double]
    V: [1x1 struct]
    r: 2
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
S = 
  class: factorization_cod_sparse
  sparse COD factorization: A = U*R*V'
  A: [3x2 double]
  Factors:
    U: [1x1 struct]
    R: [3x2 double]
    V: [1x1 struct]
    r: 2
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
error: 6.55681e-16

----------Dense QR factorization of A':

factorize: strategy qr, A has size 2-by-3, full.
factorize: try QR of A' ... OK.
F = 
  class: factorization_qrt_dense
  dense economy QR factorization: A' = Q*R
  A: [2x3 double]
  Factors:
    Q: [3x2 double]
    R: [2x2 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
S = 
  class: factorization_qrt_dense
  dense economy QR factorization: A' = Q*R
  A: [2x3 double]
  Factors:
    Q: [3x2 double]
    R: [2x2 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
error: 9.85539e-16

----------Sparse QR factorization:

factorize: strategy default, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try QR of A ... OK.
F = 
  class: factorization_qr_sparse
  sparse QR factorization of A: (A*P)'*A*P = R'*R
  A: [3x2 double]
  Factors:
    R: [2x2 double]
    P: [2x2 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
S = 
  class: factorization_qr_sparse
  sparse QR factorization of A: (A*P)'*A*P = R'*R
  A: [3x2 double]
  Factors:
    R: [2x2 double]
    P: [2x2 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
error: 5.55647e-16

----------Sparse QR factorization of A':

factorize: strategy default, A has size 2-by-3, sparse with 6 nonzeros.
factorize: try QR of A' ... OK.
F = 
  class: factorization_qrt_sparse
  sparse QR factorization of A': (P*A)*(P*A)' = R'*R
  A: [2x3 double]
  Factors:
    R: [2x2 double]
    P: [2x2 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
S = 
  class: factorization_qrt_sparse
  sparse QR factorization of A': (P*A)*(P*A)' = R'*R
  A: [2x3 double]
  Factors:
    R: [2x2 double]
    P: [2x2 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_condest: 1.573790e+00
error: 5.55647e-16

----------SVD factorization:

factorize: strategy svd, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try SVD ... OK.
F = 
  class: factorization_svd
  singular value decomposition: A = U*S*V'
  A: [3x2 double]
  Factors:
    U: [3x3 double]
    S: [2x1 double]
    V: [2x2 double]
    r: 2
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_cond: 4.580233e+00
S = 
  class: factorization_svd
  singular value decomposition: A = U*S*V'
  A: [3x2 double]
  Factors:
    U: [3x3 double]
    S: [2x1 double]
    V: [2x2 double]
    r: 2
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 2
  A_cond: 4.580233e+00
error: 5.24545e-16

----------Dense LDL factorization:

factorize: strategy ldl, A has size 6-by-6, full.
factorize: try LDL ... OK.
F = 
  class: factorization_ldl_dense
  dense LDL factorization: A(p,p) = L*D*L'
  A: [6x6 double]
  Factors:
    L: [6x6 double]
    D: [6x6 double]
    p: [1 4 3 6 5 2]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 6
  A_condest: 3.116758e+00
S = 
  class: factorization_ldl_dense
  dense LDL factorization: A(p,p) = L*D*L'
  A: [6x6 double]
  Factors:
    L: [6x6 double]
    D: [6x6 double]
    p: [1 4 3 6 5 2]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 6
  A_condest: 3.116758e+00
error: 4.60596e-17

----------Sparse LDL factorization:

factorize: strategy ldl, A has size 6-by-6, sparse with 18 nonzeros.
factorize: try LDL ... OK.
F = 
  class: factorization_ldl_sparse
  sparse LDL factorization: P'*A*P = L*D*L'
  A: [6x6 double]
  Factors:
    L: [6x6 double]
    D: [6x6 double]
    P: [6x6 double]
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 6
  A_condest: 3.364501e+00
S = 
  class: factorization_ldl_sparse
  sparse LDL factorization: P'*A*P = L*D*L'
  A: [6x6 double]
  Factors:
    L: [6x6 double]
    D: [6x6 double]
    P: [6x6 double]
  is_inverse: 1
  is_ctrans: 0
  alpha: 1
  A_rank: 6
  A_condest: 3.364501e+00
error: 9.21191e-17

----------Dense QR and QR' with scalar A and sparse b:
F = 
  class: factorization_qr_dense
  dense economy QR factorization: A = Q*R
  A: [1x1 double]
  Factors:
    Q: 1
    R: 3.1416
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 1
  A_condest: 1
F = 
  class: factorization_qrt_dense
  dense economy QR factorization: A' = Q*R
  A: [1x1 double]
  Factors:
    Q: 1
    R: 3.1416
  is_inverse: 0
  is_ctrans: 0
  alpha: 1
  A_rank: 1
  A_condest: 1

All disp tests passed, max error: 6.24741e-12

Testing error handling (error messages are expected)

Expected error: [Matrix must be 2D.]

factorize: strategy gunk, A has size 4-by-4, full.
Expected error: [unrecognized strategy.]
Expected error: [COD is not designed for sparse matrices.  Use COD_SPARSE instead.]
Expected error: [RQ is not designed for sparse matrices.]
Expected error: [B\F where F=inverse(A) requires the explicit computation of the inverse.
This is ill-advised, so it is never done automatically.
To force it, use B\double(F) instead of B\F.
]
Expected error: [F/B where F=inverse(A) requires the explicit computation of the inverse.
This is ill-advised, so it is never done automatically.
To force it, use double(F)/B instead of F/B.
]
Expected error: [COD_SPARSE is not designed for full matrices.  Use COD instead.]

factorize: strategy default, A has size 3-by-3, full.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'logical'.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'char'.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'char'.
factorize: try COD ... failed.
factorize: First argument must be single or double.

Expected error: [First argument must be single or double.]

factorize: strategy default, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'char'.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'logical'.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'logical'.
factorize: try COD ... failed.
factorize: matrix type not supported

Expected error: [matrix type not supported]

factorize: strategy symmetric, A has size 3-by-3, full.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'logical'.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'char'.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'char'.
factorize: try COD ... failed.
factorize: First argument must be single or double.

Expected error: [First argument must be single or double.]

factorize: strategy symmetric, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'char'.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'logical'.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'logical'.
factorize: try COD ... failed.
factorize: matrix type not supported

Expected error: [matrix type not supported]

factorize: strategy qr, A has size 3-by-3, full.
factorize: try QR of A ... failed.
factorize: First argument must be single or double.

Expected error: [First argument must be single or double.]

factorize: strategy qr, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try QR of A ... failed.
factorize: A must be double

Expected error: [A must be double]

factorize: strategy lu, A has size 3-by-3, full.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'char'.

Expected error: [Undefined function or method 'lu' for input arguments of type 'char'.]

factorize: strategy lu, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try LU ... failed.
factorize: Undefined function or method 'lu' for input arguments of type 'logical'.

Expected error: [Undefined function or method 'lu' for input arguments of type 'logical'.]

factorize: strategy ldl, A has size 3-by-3, full.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'char'.

Expected error: [Undefined function or method 'ldl' for input arguments of type 'char'.]

factorize: strategy ldl, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try LDL ... failed.
factorize: Undefined function or method 'ldl' for input arguments of type 'logical'.

Expected error: [Undefined function or method 'ldl' for input arguments of type 'logical'.]

factorize: strategy chol, A has size 3-by-3, full.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'logical'.

Expected error: [Undefined function or method 'chol' for input arguments of type 'logical'.]

factorize: strategy chol, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try CHOL ... failed.
factorize: Undefined function or method 'chol' for input arguments of type 'char'.

Expected error: [Undefined function or method 'chol' for input arguments of type 'char'.]

factorize: strategy svd, A has size 3-by-3, full.
factorize: try SVD ... failed.
factorize: Undefined function or method 'svd' for input arguments of type 'logical'.

Expected error: [Undefined function or method 'svd' for input arguments of type 'logical'.]

factorize: strategy svd, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try SVD ... failed.
factorize: Undefined function or method 'svd' for input arguments of type 'logical'.

Expected error: [Undefined function or method 'svd' for input arguments of type 'logical'.]

factorize: strategy cod, A has size 3-by-3, full.
factorize: try COD ... failed.
factorize: First argument must be single or double.

Expected error: [First argument must be single or double.]

factorize: strategy cod, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try COD ... failed.
factorize: matrix type not supported

Expected error: [matrix type not supported]

factorize: strategy qr, A has size 3-by-4, sparse with 12 nonzeros.
factorize: try QR of A' ... failed.
factorize: A must be double

Expected error: [A must be double]

factorize: strategy ldl, A has size 3-by-3, full.
factorize: try LDL ... failed.
factorize: Matrix is singular to working precision.

factorize: strategy ldl, A has size 3-by-2, full.
factorize: try LDL ... failed.
factorize: Matrix must be square.

factorize: strategy ldl, A has size 2-by-3, full.
factorize: try LDL ... failed.
factorize: Matrix must be square.

factorize: strategy ldl, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try LDL ... failed.
factorize: Matrix is singular to working precision.

factorize: strategy ldl, A has size 3-by-2, sparse with 0 nonzeros.
factorize: try LDL ... failed.
factorize: Matrix must be square.

factorize: strategy ldl, A has size 2-by-3, sparse with 0 nonzeros.
factorize: try LDL ... failed.
factorize: Matrix must be square.

factorize: strategy chol, A has size 3-by-3, full.
factorize: try CHOL ... failed.
factorize: Matrix must be positive definite.

factorize: strategy chol, A has size 3-by-2, full.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

factorize: strategy chol, A has size 2-by-3, full.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

factorize: strategy chol, A has size 3-by-3, sparse with 9 nonzeros.
factorize: try CHOL ... failed.
factorize: Matrix must be positive definite.

factorize: strategy chol, A has size 3-by-2, sparse with 0 nonzeros.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

factorize: strategy chol, A has size 2-by-3, sparse with 0 nonzeros.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

factorize: strategy lu, A has size 3-by-2, full.
factorize: try LU ... failed.
factorize: LU for rectangular matrices not supported.  Use QR.

Expected error: [LU for rectangular matrices not supported.  Use QR.]

factorize: strategy lu, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try LU ... failed.
factorize: LU for rectangular matrices not supported.  Use QR.

Expected error: [LU for rectangular matrices not supported.  Use QR.]

factorize: strategy ldl, A has size 3-by-2, full.
factorize: try LDL ... failed.
factorize: Matrix must be square.

Expected error: [Matrix must be square.]

factorize: strategy ldl, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try LDL ... failed.
factorize: Matrix must be square.

Expected error: [Matrix must be square.]

factorize: strategy chol, A has size 3-by-2, full.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

Expected error: [Matrix must be square.]

factorize: strategy chol, A has size 3-by-2, sparse with 6 nonzeros.
factorize: try CHOL ... failed.
factorize: Matrix must be square.

Expected error: [Matrix must be square.]

Expected error: [QR(A) method requires m>=n.]

Expected error: [QR of A requires m >= n.]

Expected error: [QR(A') method requires m<=n.]

Expected error: [QR of A' requires m < n.]

factorize: strategy ldl, A has size 2-by-2, full.
factorize: try LDL ... failed.
factorize: Matrix is singular to working precision.

Expected error: [Matrix is singular to working precision.]

factorize: strategy ldl, A has size 2-by-2, sparse with 0 nonzeros.
factorize: try LDL ... failed.
factorize: Matrix is singular to working precision.

Expected error: [Matrix is singular to working precision.]

factorize: strategy chol, A has size 2-by-2, full.
factorize: try CHOL ... failed.
factorize: Matrix must be positive definite.

Expected error: [Matrix must be positive definite.]

factorize: strategy chol, A has size 2-by-2, sparse with 0 nonzeros.
factorize: try CHOL ... failed.
factorize: Matrix must be positive definite.

Expected error: [Matrix must be positive definite.]

factorize: strategy default, A has size 3-by-2, full.
factorize: try COD ... OK.

Expected error: [Cell contents reference from a non-cell array object.]
Expected error: [Improper index matrix reference.]
Expected error: [Reference to non-existent field 'L'.]
Expected error: [Reference to non-existent field 'junk'.]

factorize: strategy default, A has size 2-by-2, full.
factorize: try LU ... OK.

Expected error: [Undefined function or method 'cholupdate' for input arguments of type 'factorization_lu_dense'.]
Expected error: [Undefined function or method 'choldowndate' for input arguments of type 'factorization_lu_dense'.]

Expected error: [Matrix must be square.]

Expected error: [A is rectangular.  Use the 2 norm.]

Expected error: [unrecognized kind]

Expected error: [Third argument must be '+' or '-'.]

All error-handing tests passed

----- Test functions:

norm(A,1), exact:             0
  MATLAB normest1(A)          0

norm (inv(A),1) exact:        0
  MATLAB normest1 (inv (A)):  -1
  normest1 (inverse (F)):     0

  cond (A,1), exact:          -1
  MATLAB condest(A):          0
  condest(F):                 0
  condest(inverse(A)):        0
  cond (A,2), exact:          -1
  cond (F,2), exact:          -1
  rankest 0 0
  cheap condest:              0
K =
             A: []
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 0
        A_cond: []
          kind: 'dense LDL factorization: A(p,p) = L*D*L''
K =
             A: []
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 0
        A_cond: []
          kind: 'dense LDL factorization: A(p,p) = L*D*L''

norm(A,1), exact:             3.07802
  MATLAB normest1(A)          3.07802

norm (inv(A),1) exact:        1.94889e+06
  MATLAB normest1 (inv (A)):  1.94889e+06
  normest1 (inverse (F)):     1.94889e+06

  cond (A,1), exact:          -1
  MATLAB condest(A):          5.99871e+06
  condest(F):                 5.99871e+06
  condest(inverse(A)):        5.99871e+06
  cond (A,2), exact:          -1
  cond (F,2), exact:          -1
  rankest 3 3
K =
             A: [3x3 double]
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 3
        A_cond: []
          kind: 'dense Cholesky factorization: A = R'*R'
K =
             A: [3x3 double]
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 3
        A_cond: []
          kind: 'dense Cholesky factorization: A = R'*R'

norm(A,1), exact:             1.99749
  MATLAB normest1(A)          1.99749

norm (inv(A),1) exact:        1785.44
  MATLAB normest1 (inv (A)):  1785.44
  normest1 (inverse (F)):     1785.44

  cond (A,1), exact:          3566.41
  MATLAB condest(A):          3566.41
  condest(F):                 3566.41
  condest(inverse(A)):        3566.41
  cond (A,2), exact:          2050.35
  cond (F,2), exact:          2050.35
  rankest 3 3
K =
             A: [3x3 double]
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 3
        A_cond: 2.0503e+03
          kind: 'singular value decomposition: A = U*S*V''
K =
             A: [3x3 double]
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 3
        A_cond: 2.0503e+03
          kind: 'singular value decomposition: A = U*S*V''

norm(A,1), exact:             6.43078
  MATLAB normest1(A)          6.43078

norm (inv(A),1) exact:        14.3894
  MATLAB normest1 (inv (A)):  14.3894
  normest1 (inverse (F)):     14.3894

  cond (A,1), exact:          -1
  MATLAB condest(A):          92.5354
  condest(F):                 92.5354
  condest(inverse(A)):        92.5354
  cond (A,2), exact:          -1
  cond (F,2), exact:          -1
  rankest 10 10
  cheap condest:              2.49707
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 10
        A_cond: []
          kind: 'dense LU factorization: A(p,:) = L*U'
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 10
        A_cond: []
          kind: 'dense LU factorization: A(p,:) = L*U'

Methods for class factorization_svd:

abs                isa                mldivide           rankest            
cond               isempty            mldivide_subclass  size               
condest            isfield            mrdivide           struct             
ctranspose         isfloat            mrdivide_subclass  subsref            
disp               isnumeric          mtimes             svd                
double             isreal             norm               uminus             
end                isscalar           null               uplus              
error_check        issingle           orth               
factorization_svd  issparse           pinv               
inverse            isvector           rank               


norm(A,1), exact:             32.5678
  MATLAB normest1(A)          32.5678

norm (inv(A),1) exact:        0.0679415
  MATLAB normest1 (inv (A)):  0.0652449
  normest1 (inverse (F)):     0.0652449

  cond (A,1), exact:          2.2127
  MATLAB condest(A):          2.12488
  condest(F):                 2.12488
  condest(inverse(A)):        2.12488
  cond (A,2), exact:          1.70306
  cond (F,2), exact:          1.70306
  rankest 10 10
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 10
        A_cond: 1.7031
          kind: 'singular value decomposition: A = U*S*V''
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 10
        A_cond: 1.7031
          kind: 'singular value decomposition: A = U*S*V''

Methods for class factorization_chol_dense:

abs                       isempty                   mrdivide                  
cholupdate                isfield                   mrdivide_subclass         
condest                   isfloat                   mtimes                    
ctranspose                isnumeric                 rankest                   
disp                      isreal                    size                      
double                    isscalar                  struct                    
end                       issingle                  subsref                   
error_check               issparse                  uminus                    
factorization_chol_dense  isvector                  uplus                     
inverse                   mldivide                  
isa                       mldivide_subclass         


norm(A,1), exact:             32.5678
  MATLAB normest1(A)          32.5678

norm (inv(A),1) exact:        0.0679415
  MATLAB normest1 (inv (A)):  0.0652449
  normest1 (inverse (F)):     0.0652449

  cond (A,1), exact:          -1
  MATLAB condest(A):          2.12488
  condest(F):                 2.12488
  condest(inverse(A)):        2.12488
  cond (A,2), exact:          -1
  cond (F,2), exact:          -1
  rankest 10 10
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 0
     is_ctrans: 0
         alpha: 1
        A_rank: 10
        A_cond: []
          kind: 'dense Cholesky factorization: A = R'*R'
K =
             A: [10x10 double]
       Factors: [1x1 struct]
    is_inverse: 1
     is_ctrans: 1
         alpha: 1
        A_rank: 10
        A_cond: []
          kind: 'dense Cholesky factorization: A = R'*R'
........................................................................
test_functions, max error: 1.38512e-10

Testing accuracy:

factorize: strategy ldl, A has size 4-by-4, full.
factorize: try LDL ... OK.
..please wait
test  1 of 14 ..........................................................
test  2 of 14 ..........................................................
test  3 of 14 ..........................................................
test  4 of 14 ..........................................................
test  5 of 14 ..........................................................
test  6 of 14 ........................................................
test  7 of 14 ..........................................................
test  8 of 14 ........................................................
test  9 of 14 ..........................................................
test 10 of 14 ........................................................
test 11 of 14 ..........................................................
test 12 of 14 ........................................................
test 13 of 14 ..........................................................
test 14 of 14 ........................................................
.
err so far: 2.92744e-12
please wait .........................................................
max error is OK: 8.56286e-09
................
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
....................................
.........
test_all_svd error so far: 1.99577e-14
Testing on gallery ('randsvd',50) matrices:
..
Final test_all_svd error: 9.05166e-10
test COD, COD_SPARSE, and RQ: error 1.07415e-15

Performance comparisons of 4 methods:
    backslash:  A\b, or L\b (and related) for solve times.
    linsolve:   a built-in MATLAB function
    factorize:  the factorization object
    inv:        x=inv(A)*b, the explicit inverse (ack!)
Run times are in seconds.
Time relative to best time is in parentheses (lower is better).

------------------ For unsymmetric matrices:

Compare factorization times:
n   50 tbest   0.000231 :
    backslash ( 1.04)
    linsolve  ( 1.00)
    factorize ( 5.57)
    inv       ( 1.50)
n  100 tbest   0.000829 :
    backslash ( 1.11)
    linsolve  ( 1.00)
    factorize ( 2.36)
    inv       ( 1.96)
n  500 tbest   0.049129 :
    backslash ( 1.05)
    linsolve  ( 1.00)
    factorize ( 1.09)
    inv       ( 2.41)
n 1000 tbest   0.332374 :
    backslash ( 1.04)
    linsolve  ( 1.01)
    factorize ( 1.00)
    inv       ( 2.51)

Compare solve times:
n   50 tbest   0.000013 :
    backslash ( 2.53)
    linsolve  ( 2.94)
    factorize (30.20)
    inv       ( 1.00)
n  100 tbest   0.000023 :
    backslash ( 3.04)
    linsolve  ( 2.46)
    factorize (18.41)
    inv       ( 1.00)
n  500 tbest   0.000423 :
    backslash ( 4.33)
    linsolve  ( 1.78)
    factorize ( 3.21)
    inv       ( 1.00)
n 1000 tbest   0.002432 :
    backslash ( 2.74)
    linsolve  ( 1.32)
    factorize ( 1.48)
    inv       ( 1.00)

Break-even values K for inv vs the other methods
(# of solves must exceed K for inv(A)*b to be faster):
n   50
    # solves vs backslash       5.2
    # solves vs linsolve:       4.4
    # solves vs factorize:      1.0
n  100
    # solves vs backslash      14.8
    # solves vs linsolve:      23.5
    # solves vs factorize:      1.0
n  500
    # solves vs backslash      47.3
    # solves vs linsolve:     210.7
    # solves vs factorize:     69.1
n 1000
    # solves vs backslash     115.7
    # solves vs linsolve:     645.9
    # solves vs factorize:    431.0

------------------ For positive definite matrices:

Compare factorization times:
n   50 tbest   0.000172 :
    backslash ( 1.10)
    linsolve  ( 1.00)
    factorize ( 5.59)
    inv       ( 1.75)
n  100 tbest   0.000536 :
    backslash ( 1.17)
    linsolve  ( 1.00)
    factorize ( 2.42)
    inv       ( 2.29)
n  500 tbest   0.023547 :
    backslash ( 1.25)
    linsolve  ( 1.12)
    factorize ( 1.00)
    inv       ( 3.90)
n 1000 tbest   0.145861 :
    backslash ( 1.27)
    linsolve  ( 1.18)
    factorize ( 1.00)
    inv       ( 5.11)

Compare solve times:
n   50 tbest   0.000013 :
    backslash ( 3.15)
    linsolve  ( 2.71)
    factorize (29.95)
    inv       ( 1.00)
n  100 tbest   0.000024 :
    backslash ( 3.30)
    linsolve  ( 2.22)
    factorize (17.60)
    inv       ( 1.00)
n  500 tbest   0.000440 :
    backslash ( 3.33)
    linsolve  ( 1.00)
    factorize ( 2.07)
    inv       ( 1.01)
n 1000 tbest   0.002613 :
    backslash ( 2.49)
    linsolve  ( 1.00)
    factorize ( 1.19)
    inv       ( 1.05)

Break-even values K for inv vs the other methods
(# of solves must exceed K for inv(A)*b to be faster):
n   50
    # solves vs backslash       3.9
    # solves vs linsolve:       5.6
    # solves vs factorize:      1.0
n  100
    # solves vs backslash      11.0
    # solves vs linsolve:      23.9
    # solves vs factorize:      1.0
n  500
    # solves vs backslash      61.0
    # solves vs linsolve:       Inf
    # solves vs factorize:    146.1
n 1000
    # solves vs backslash     148.4
    # solves vs linsolve:       Inf
    # solves vs factorize:   1616.2

Schur complement, S=A-B*inv(D)*C or A-B(D\C),
where A, B, C, and D are square and unsymmetric.
"inverse" means S=A-B*inverse(D)*C, which does not actually
use the inverse, but uses the factorization object instead.
n   50 tbest   0.000482 :
    backslash ( 1.01)
    linsolve  ( 1.00)
    factorize ( 3.45)
    inv       ( 4.01)
n  100 tbest   0.002334 :
    backslash ( 1.05)
    linsolve  ( 1.00)
    factorize ( 1.70)
    inv       ( 1.81)
n  500 tbest   0.234306 :
    backslash ( 1.00)
    linsolve  ( 1.02)
    factorize ( 1.05)
    inv       ( 1.10)
n 1000 tbest   1.736168 :
    backslash ( 1.00)
    linsolve  ( 1.03)
    factorize ( 1.24)
    inv       ( 1.02)

All tests passed, maximum error OK: 8.56286e-09
diary off