File: factorization_qr_dense.m

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (57 lines) | stat: -rw-r--r-- 1,929 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
classdef factorization_qr_dense < factorization
%FACTORIZATION_QR_DENSE A = Q*R where A is full.

% Factorize, Copyright (c) 2011-2012, Timothy A Davis. All Rights Reserved.
% SPDX-License-Identifier: BSD-3-clause

    methods

        function F = factorization_qr_dense (A, fail_if_singular)
            %FACTORIZATION_QR_DENSE : A = Q*R
            [m, n] = size (A) ;
            if (m < n)
                error ('FACTORIZE:wrongdim', 'QR(A) method requires m>=n.') ;
            end
            [f.Q, f.R] = qr (A,0) ;
            F.A_condest = cheap_condest (get_diag (f.R), fail_if_singular) ;
            F.A = A ;
            F.Factors = f ;
            F.A_rank = rank_est (f.R, m, n) ;
            F.kind = 'dense economy QR factorization: A = Q*R' ;
        end

        function e = error_check (F)
            %ERROR_CHECK : return relative 1-norm of error in factorization
            % meant for testing only
            f = F.Factors ;
            e = norm (F.A - f.Q*f.R, 1) / norm (F.A, 1) ;
        end

        function x = mldivide_subclass (F,b)
            %MLDIVIDE_SUBLCASS x = A\b using a dense economy QR of A
            % least-squares solution of an overdetermined problem
            % x = R \ (Q' * b)
            f = F.Factors ;
            opU.UT = true ;
            y = f.Q' * b ;
            if (issparse (y))
                y = full (y) ;
            end
            x = linsolve (f.R, y, opU) ;
        end

        function x = mrdivide_subclass (b,F)
            %MRDIVIDE_SUBCLASS x = b/A using dense economy QR of A
            % minimum 2-norm solution of a underdetermined problem
            % x = (Q * (R' \ b'))' ;
            f = F.Factors ;
            opUT.UT = true ;
            opUT.TRANSA = true ;
            y = b' ;
            if (issparse (y))
                y = full (y) ;
            end
            x = (f.Q * linsolve (f.R, y, opUT))' ;
        end
    end
end