File: factorization_qr_sparse.m

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (55 lines) | stat: -rw-r--r-- 2,104 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
classdef factorization_qr_sparse < factorization
%FACTORIZATION_QR_SPARSE (A*P)'*(A*P) = R'*R where A is sparse.

% Factorize, Copyright (c) 2011-2012, Timothy A Davis. All Rights Reserved.
% SPDX-License-Identifier: BSD-3-clause

    methods

        function F = factorization_qr_sparse (A, fail_if_singular)
            %FACTORIZATION_QR_SPARSE economy sparse QR: (A*P)'*(A*P) = R'*R
            if (~isa (A, 'double'))
                error ('FACTORIZE:wrongtype', 'A must be double') ;
            end
            [m, n] = size (A) ;
            if (m < n)
                error ('FACTORIZE:wrongdim', 'QR of A requires m >= n.') ;
            end
            [~, f.R, p] = qr (A, sparse (m,0), 0) ;
            f.P = sparse (p, 1:n, 1) ;
            F.A_condest = cheap_condest (get_diag (f.R), fail_if_singular) ;
            F.A = A ;
            F.Factors = f ;
            F.A_rank = rank_est (f.R, m, n) ;
            F.kind = 'sparse QR factorization of A: (A*P)''*A*P = R''*R' ;
        end

        function e = error_check (F)
            %ERROR_CHECK : return relative 1-norm of error in factorization
            % meant for testing only
            f = F.Factors ;
            e = norm ((F.A*f.P)'*(F.A*f.P) - f.R'*f.R, 1) / norm (F.A'*F.A, 1) ;
        end

        function x = mldivide_subclass (F,b)
            %MLDIVIDE_SUBLCASS x = A\b using economy sparse QR of A
            % least-squares solution of an overdetermined problem
            A = F.A ;
            f = F.Factors ;
            x = f.P * (f.R \ (f.R' \ (f.P' * (A' * b)))) ;
            e = f.P * (f.R \ (f.R' \ (f.P' * (A' * (b - A * x))))) ;
            x = x + e ;
        end

        function x = mrdivide_subclass (b,F)
            %MRDIVIDE_SUBCLASS x = b/A using economy sparse QR of A
            % minimum 2-norm solution of an underdetermined problem
            bT = b' ;
            A = F.A ;
            f = F.Factors ;
            x = A * (f.P * (f.R \ (f.R' \ (f.P' * bT)))) ;
            e = A * (f.P * (f.R \ (f.R' \ (f.P' * (bT - A' * x))))) ;
            x = (x + e)' ;
        end
    end
end