1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
//==============================================================================
//=== sfmult_AN_XT_YT ==========================================================
//==============================================================================
// SFMULT, Copyright (c) 2009, Timothy A Davis. All Rights Reserved.
// SPDX-License-Identifier: BSD-3-clause
// y = (A*x')' A is m-by-n, x is k-by-n, y is k-by-m
// compare with sfmult_AN_XT_YN for kernel usage
// compare with sfmult_AN_XN_YT for outer loop structure but different kernels
#include "sfmult.h"
mxArray *sfmult_AN_XT_YT // y = (A*x')'
(
const mxArray *A,
const mxArray *X,
int ac, // if true: conj(A) if false: A. ignored if A real
int xc, // if true: conj(x) if false: x. ignored if x real
int yc // if true: conj(y) if false: y. ignored if y real
)
{
mxArray *Y ;
double *Ax, *Az, *Xx, *Xz, *Yx, *Yz, *Wx, *Wz ;
Int *Ap, *Ai ;
Int m, n, k, k1, i ;
int Acomplex, Xcomplex, Ycomplex ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
m = mxGetM (A) ;
n = mxGetN (A) ;
k = mxGetM (X) ;
if (n != mxGetN (X)) sfmult_invalid ( ) ;
Acomplex = mxIsComplex (A) ;
Xcomplex = mxIsComplex (X) ;
Ap = mxGetJc (A) ;
Ai = mxGetIr (A) ;
Ax = mxGetPr (A) ;
Az = mxGetPi (A) ;
Xx = mxGetPr (X) ;
Xz = mxGetPi (X) ;
//--------------------------------------------------------------------------
// allocate result
//--------------------------------------------------------------------------
Ycomplex = Acomplex || Xcomplex ;
Y = sfmult_yalloc (k, m, Ycomplex) ;
Yx = mxGetPr (Y) ;
Yz = mxGetPi (Y) ;
//--------------------------------------------------------------------------
// special cases
//--------------------------------------------------------------------------
if (k == 0 || m == 0 || n == 0 || Ap [n] == 0)
{
// Y = 0
return (sfmult_yzero (Y)) ;
}
if (k == 1)
{
// Y = A*X
sfmult_AN_x_1 (Yx, Yz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc) ;
return (Y) ;
}
if (k == 2)
{
// Y = (A * X')'
sfmult_AN_XT_YT_2 (Yx, Yz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k);
return (Y) ;
}
if (k == 4)
{
// Y = (A * X')'
sfmult_AN_XT_YT_4 (Yx, Yz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k);
return (Y) ;
}
if (k > 12 && Ap [n] < 8 * MAX (m,n)) // (TO DO) check overflow
{
// Y = (A * X')' when A is moderately sparse and X is large
mxArray *C ;
double *Cx, *Cz ;
Int *Cp, *Ci ;
// C = A' ;
C = ssmult_transpose (A, 0) ;
// (TO DO) if C is NULL, skip this and try using (A*X')' below
// Y = (C' * X')' when A is moderately sparse and X is large
Cp = mxGetJc (C) ;
Ci = mxGetIr (C) ;
Cx = mxGetPr (C) ;
Cz = mxGetPi (C) ;
sfmult_xA (Yx, Yz, Cp, Ci, Cx, Cz, n, m, Xx, Xz, ac, xc, yc, k) ;
mxDestroyArray (C) ;
return (Y) ;
}
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
sfmult_walloc (4, m, &Wx, &Wz) ;
// (TO DO) if walloc fails, use a workspace-free technique.
// This may require new sparse-times-vector kernels (both x and y with
// non-unit strides)
//--------------------------------------------------------------------------
// Y = (A*X')', in blocks of up to 4 columns of X, using sfmult_anxtyt
//--------------------------------------------------------------------------
k1 = k % 4 ;
if (k1 == 1)
{
// W = A * X(1,:)'
sfmult_AN_xk_1 (Wx, Wz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k) ;
// Y (1,:) = W'
for (i = 0 ; i < m ; i++)
{
Yx [k*i] = Wx [i] ;
}
Yx += 1 ;
Yz += 1 ;
Xx += 1 ;
Xz += 1 ;
}
else if (k1 == 2)
{
// W = (A * X(1:2,:)')'
sfmult_AN_XT_YT_2 (Wx, Wz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k);
// Y (1:2,:) = W
for (i = 0 ; i < m ; i++)
{
Yx [k*i ] = Wx [2*i ] ;
Yx [k*i+1] = Wx [2*i+1] ;
}
Yx += 2 ;
Yz += 2 ;
Xx += 2 ;
Xz += 2 ;
}
else if (k1 == 3)
{
// W = (A * X(1:3,:)')'
sfmult_AN_XT_YT_3 (Wx, Wz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k);
// Y (1:3,:) = W
for (i = 0 ; i < m ; i++)
{
Yx [k*i ] = Wx [4*i ] ;
Yx [k*i+1] = Wx [4*i+1] ;
Yx [k*i+2] = Wx [4*i+2] ;
}
Yx += 3 ;
Yz += 3 ;
Xx += 3 ;
Xz += 3 ;
}
for ( ; k1 < k ; k1 += 4)
{
// W = (A * X(1:4,:)')'
sfmult_AN_XT_YT_4 (Wx, Wz, Ap, Ai, Ax, Az, m, n, Xx, Xz, ac, xc, yc, k);
// Y (k1+(1:4),:) = W
for (i = 0 ; i < m ; i++)
{
Yx [k*i ] = Wx [4*i ] ;
Yx [k*i+1] = Wx [4*i+1] ;
Yx [k*i+2] = Wx [4*i+2] ;
Yx [k*i+3] = Wx [4*i+3] ;
}
Yx += 4 ;
Yz += 4 ;
Xx += 4 ;
Xz += 4 ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
mxFree (Wx) ;
return (Y) ;
}
|