1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
//==============================================================================
// ssmult_transpose
//==============================================================================
// SFMULT, Copyright (c) 2009, Timothy A Davis. All Rights Reserved.
// SPDX-License-Identifier: BSD-3-clause
// C = A' or A.' where the input matrix A may have unsorted columns. The output
// C is always returned with sorted columns.
#include "sfmult.h"
mxArray *ssmult_transpose // returns C = A' or A.'
(
const mxArray *A,
int conj // compute A' if true, compute A.' if false
)
{
Int *Cp, *Ci, *Ap, *Ai, *W ;
double *Cx, *Cz, *Ax, *Az ; // (TO DO): do single too
mxArray *C ;
Int p, pend, q, i, j, n, m, anz, cnz ;
int C_is_complex ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
m = mxGetM (A) ;
n = mxGetN (A) ;
Ap = mxGetJc (A) ;
Ai = mxGetIr (A) ;
Ax = mxGetPr (A) ;
Az = mxGetPi (A) ;
anz = Ap [n] ;
C_is_complex = mxIsComplex (A) ;
//--------------------------------------------------------------------------
// allocate C but do not initialize it
//--------------------------------------------------------------------------
cnz = MAX (anz, 1) ;
C = mxCreateSparse (0, 0, 0, C_is_complex ? mxCOMPLEX : mxREAL) ;
MXFREE (mxGetJc (C)) ;
MXFREE (mxGetIr (C)) ;
MXFREE (mxGetPr (C)) ;
MXFREE (mxGetPi (C)) ;
Cp = mxMalloc ((m+1) * sizeof (Int)) ;
Ci = mxMalloc (MAX (cnz,1) * sizeof (Int)) ;
Cx = mxMalloc (MAX (cnz,1) * sizeof (double)) ;
Cz = C_is_complex ? mxMalloc (MAX (cnz,1) * sizeof (double)) : NULL ;
mxSetJc (C, Cp) ;
mxSetIr (C, Ci) ;
mxSetPr (C, Cx) ;
mxSetPi (C, Cz) ;
mxSetNzmax (C, cnz) ;
mxSetM (C, n) ;
mxSetN (C, m) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
W = mxCalloc (MAX (m,1), sizeof (Int)) ;
//--------------------------------------------------------------------------
// compute row counts
//--------------------------------------------------------------------------
for (p = 0 ; p < anz ; p++)
{
W [Ai [p]]++ ;
}
//--------------------------------------------------------------------------
// compute column pointers of C and copy back into W
//--------------------------------------------------------------------------
for (p = 0, i = 0 ; i < m ; i++)
{
Cp [i] = p ;
p += W [i] ;
W [i] = Cp [i] ;
}
Cp [m] = p ;
//--------------------------------------------------------------------------
// C = A'
//--------------------------------------------------------------------------
p = 0 ;
if (!C_is_complex)
{
// C = A' (real case)
for (j = 0 ; j < n ; j++)
{
pend = Ap [j+1] ;
for ( ; p < pend ; p++)
{
q = W [Ai [p]]++ ; // find position for C(j,i)
Ci [q] = j ; // place A(i,j) as entry C(j,i)
Cx [q] = Ax [p] ;
}
}
}
else if (conj)
{
// C = A' (complex conjugate)
for (j = 0 ; j < n ; j++)
{
pend = Ap [j+1] ;
for ( ; p < pend ; p++)
{
q = W [Ai [p]]++ ; // find position for C(j,i)
Ci [q] = j ; // place A(i,j) as entry C(j,i)
Cx [q] = Ax [p] ;
Cz [q] = -Az [p] ;
}
}
}
else
{
// C = A.' (complex case)
for (j = 0 ; j < n ; j++)
{
pend = Ap [j+1] ;
for ( ; p < pend ; p++)
{
q = W [Ai [p]]++ ; // find position for C(j,i)
Ci [q] = j ; // place A(i,j) as entry C(j,i)
Cx [q] = Ax [p] ;
Cz [q] = Az [p] ;
}
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
MXFREE (W) ;
return (C) ;
}
|