1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
// SuiteSparse/MATLAB_Tools/SSMULT/ssmult.c
// SSMULT, Copyright (c) 2007-2011, Timothy A Davis. All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0+
/* ========================================================================== */
/* == ssmult ================================================================ */
/* ========================================================================== */
/* C = A*B where A and B are sparse, or variants (A'*B, A*B', etc) using either
the saxpy method (for most matrices) or the dot product method (when C is
small compared with A and/or B).
*/
#include "ssmult.h"
/* -------------------------------------------------------------------------- */
/* ssmult_invalid */
/* -------------------------------------------------------------------------- */
void ssmult_invalid (int error)
{
if (error == ERROR_DIMENSIONS)
{
mexErrMsgTxt ("Error using ==> ssmult\n"
"Inner matrix dimensions must agree.") ;
}
else if (error == ERROR_TOO_LARGE)
{
mexErrMsgTxt ("Error using ==> ssmult\n"
"Problem too large.") ;
}
}
/* -------------------------------------------------------------------------- */
/* ssmult_use_dot */
/* -------------------------------------------------------------------------- */
/* Determine workspace required for C = A'*B using the dot product method and
the saxpy method where A is m-by-n, B is m-by-k, C is n-by-k, and return
true if the dot product method would use less workspace than the saxpy
method.
*/
static int ssmult_use_dot (const mxArray *A, const mxArray *B)
{
Int *Ap ;
Int m, n, k, anz ;
size_t dot_workspace, saxpy_workspace ;
m = mxGetM (A) ;
n = mxGetN (A) ;
k = mxGetN (B) ;
Ap = (Int *) mxGetJc (A) ;
anz = Ap [n] ;
/* ssmult_dot requires a full array C of n*k Reals */
dot_workspace = n * k * sizeof (double) ; /* (twice if A or B complex) */
if (((double) n) * ((double) k) * ((double) (sizeof (double))) !=
(double) dot_workspace)
{
/* integer overflow computing dot_workspace; use saxpy method */
return (0) ;
}
/* computing T = A' requires a workspace of size m Int's, and then the
* space for T which is (m+1) Int's for the column pointers, nnz(A) Int's
* for the row indices, and nnz(A) Reals for the values. The m Int
* workspace is freed, but reallocated by ssmult_saxpy as the Flag array.
* ssmult_saxpy requires an additional m Reals workspace.
*/
saxpy_workspace =
(2*m+1 + anz) * sizeof (Int) +
+ (anz + m) * sizeof (double) ; /* (twice if A complex) */
/* use ssmult_dot if it requires less workspace */
return (dot_workspace < saxpy_workspace) ;
}
/* -------------------------------------------------------------------------- */
/* ssmult */
/* -------------------------------------------------------------------------- */
mxArray *ssmult /* returns C = A*B or variants */
(
const mxArray *A,
const mxArray *B,
int at, /* if true: trans(A) if false: A */
int ac, /* if true: conj(A) if false: A. ignored if A real */
int bt, /* if true: trans(B) if false: B */
int bc, /* if true: conj(B) if false: B. ignored if B real */
int ct, /* if true: trans(C) if false: C */
int cc /* if true: conj(C) if false: C. ignored if C real */
)
{
mxArray *C, *T = NULL ;
if (!mxIsSparse (A) || !mxIsSparse (B))
{
mexErrMsgTxt ("A and B must be sparse") ;
}
if (at)
{
if (bt)
{
if (ct)
{
/* C = (A'*B')' A is m-by-n, B is k-by-m, C is k-by-n */
C = ssmult_saxpy (B, A, bc, ac, cc, 1) ; /* C = B*A */
}
else
{
/* C = A'*B' A is m-by-n, B is k-by-m, C is n-by-k */
T = ssmult_saxpy (B, A, bc, ac, 0, 0) ; /* T = B*A */
C = ssmult_transpose (T, cc) ; /* C = T' */
}
}
else
{
if (ct)
{
/* C = (A'*B)' A is m-by-n, B is m-by-k, C is k-by-n */
if (ssmult_use_dot (B, A))
{
C = ssmult_dot (B, A, bc, ac, cc) ; /* C = B'*A */
}
else
{
T = ssmult_transpose (B, bc) ; /* T = B' */
C = ssmult_saxpy (T, A, 0, ac, cc, 1) ; /* C = T*A */
}
}
else
{
/* C = A'*B A is m-by-n, B is m-by-k, C is n-by-k */
if (ssmult_use_dot (A, B))
{
C = ssmult_dot (A, B, ac, bc, cc) ; /* C = A'*B */
}
else
{
T = ssmult_transpose (A, ac) ; /* T = A' */
C = ssmult_saxpy (T, B, 0, bc, cc, 1) ; /* C = T*B */
}
}
}
}
else
{
if (bt)
{
if (ct)
{
/* C = (A*B')' A is m-by-n, B is k-by-n, C is k-by-m */
T = ssmult_transpose (A, ac) ; /* T = A' */
C = ssmult_saxpy (B, T, bc, 0, cc, 1) ; /* C = B*T */
}
else
{
/* C = A*B' A is m-by-n, B is k-by-n, C is m-by-k */
T = ssmult_transpose (B, bc) ; /* T = B' */
C = ssmult_saxpy (A, T, ac, 0, cc, 1) ; /* C = A*T */
}
}
else
{
if (ct)
{
/* C = (A*B)' A is m-by-n, B is n-by-k, C is k-by-m */
T = ssmult_saxpy (A, B, ac, bc, 0, 0) ; /* T = A*B */
C = ssmult_transpose (T, cc) ; /* C = T' */
}
else
{
/* C = A*B A is m-by-n, B is n-by-k, C is m-by-k */
C = ssmult_saxpy (A, B, ac, bc, cc, 1) ; /* C = A*B */
}
}
}
/* ---------------------------------------------------------------------- */
/* free workspace and return result */
/* ---------------------------------------------------------------------- */
if (T) mxDestroyArray (T) ;
return (C) ;
}
|