1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
// SuiteSparse/MATLAB_Tools/SSMULT/ssmult_dot.c
// SSMULT, Copyright (c) 2007-2011, Timothy A Davis. All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0+
/* ========================================================================== */
/* == ssmult_dot ============================================================ */
/* ========================================================================== */
/*
C = A'*B using the sparse-dot-product method. Computes C as a full matrix
first and then converts the result to sparse format. It is thus useful only
if C is small compared to A and/or B. It is very fast if A and B are long
column vectors, because in that case, computing A' takes a long time.
A is m-by-n, B is m-by-k, and thus C is n-by-k.
The time take by this function is at least proportional to n*k + flops(A*B)),
but it can be higher because a sparse dot product of x'*y where x and y are
column vectors can take up to O (nnz(x) + nnz(y)). The sparse dot product
can terminate early. In particular, the time is precisely
O (nnz (x (1:t)) + nnz (y (1:t))) where t = min (max (find (x), find (y))).
This sparse dot is used for each pair of columns of A and B. The workspace
required by this method is n*k*sizeof(double) or twice that if A or B are
complex.
By comparison, the saxpy method to compute C=A*B takes O (m+n+k+flops(A*B))
time and uses only O(m) workspace. However, C=A'*B using that method must
transpose A first, taking another O(m+n+nnz(A)) time and adding O(m+nnz(A))
workspace.
Note that m does NOT appear in the time or memory complexity of ssmult_dot
when C=A'*B is computed. Thus, if m is huge compared to n, k, nnz(A), and
so on, then it can be far faster and use far less memory. For exampe, if
A and B are very long and very sparse column vectors, the dot product method
is much faster than the saxpy method.
Comparing flop counts of the two methods is not trivial. Thus, when
computing C=A'*B, ssmult uses whichever method requires the least workspace.
Sparse dot product based matrix multiplication algorithm in MATLAB notation:
function C = ssmult_dot (A,B)
% C = A'*B A is m-by-n, B is m-by-k, C is n-by-k
C = zeros (n,k) ;
for i = 1:n
for j = 1:k
C(i,j) = A (:,i)'*B(:,j) ;
end
end
C = sparse (C) ;
*/
#include "ssmult.h"
/* -------------------------------------------------------------------------- */
/* ssmult_dot */
/* -------------------------------------------------------------------------- */
mxArray *ssmult_dot /* returns C = A'*B */
(
const mxArray *A,
const mxArray *B,
int ac, /* if true: conj(A) if false: A. ignored if A real */
int bc, /* if true: conj(B) if false: B. ignored if B real */
int cc /* if true: conj(C) if false: C. ignored if C real */
)
{
double cx, cz, ax, az, bx, bz ;
mxArray *C ;
double *Ax, *Az, *Bx, *Bz, *Cx, *Cz ;
Int *Ap, *Ai, *Bp, *Bi, *Cp, *Ci ;
Int m, n, k, cnzmax, i, j, p, paend, pbend, ai, bi, cnz, pa, pb, zallzero,
A_is_complex, B_is_complex, C_is_complex ;
/* ---------------------------------------------------------------------- */
/* get inputs */
/* ---------------------------------------------------------------------- */
m = mxGetM (A) ;
n = mxGetN (A) ;
k = mxGetN (B) ;
if (m != mxGetM (B)) ssmult_invalid (ERROR_DIMENSIONS) ;
Ap = (Int *) mxGetJc (A) ;
Ai = (Int *) mxGetIr (A) ;
Ax = mxGetPr (A) ;
Az = mxGetPi (A) ;
A_is_complex = mxIsComplex (A) ;
Bp = (Int *) mxGetJc (B) ;
Bi = (Int *) mxGetIr (B) ;
Bx = mxGetPr (B) ;
Bz = mxGetPi (B) ;
B_is_complex = mxIsComplex (B) ;
/* ---------------------------------------------------------------------- */
/* allocate C as an n-by-k full matrix but do not initialize it */
/* ---------------------------------------------------------------------- */
/* NOTE: integer overflow cannot occur here, because this function is not
called unless O(n*k) is less than O(m+nnz(A)). The test is done
in the caller, not here.
*/
cnzmax = n*k ;
cnzmax = MAX (cnzmax, 1) ;
Cx = mxMalloc (cnzmax * sizeof (double)) ;
C_is_complex = A_is_complex || B_is_complex ;
Cz = C_is_complex ? mxMalloc (cnzmax * sizeof (double)) : NULL ;
/* ---------------------------------------------------------------------- */
/* C = A'*B using sparse dot products */
/* ---------------------------------------------------------------------- */
/*
NOTE: this method REQUIRES the columns of A and B to be sorted on input.
That is, the row indices in each column must appear in ascending order.
This is the standard in all versions of MATLAB to date, and likely will
be for some time. However, if MATLAB were to use unsorted sparse
matrices in the future (a lazy sort) then a test should be included in
ssmult to not use ssmult_dot if A or B are unsorted, or they should be
sorted on input.
*/
cnz = 0 ;
for (j = 0 ; j < k ; j++)
{
for (i = 0 ; i < n ; i++)
{
/* compute C (i,j) = A (:,i)' * B (:,j) */
pa = Ap [i] ;
paend = Ap [i+1] ;
pb = Bp [j] ;
pbend = Bp [j+1] ;
if (pa == paend /* nnz (A (:,i)) == 0 */
|| pb == pbend /* nnz (B (:,j)) == 0 */
|| Ai [paend-1] < Bi [pb] /* max(find(A(:,i)))<min(find(B(:,j))) */
|| Ai [pa] > Bi [pbend-1]) /* min(find(A(:,i)))>max(find(B(:,j))) */
{
Cx [i+j*n] = 0 ; /* no work to do */
if (C_is_complex)
{
Cz [i+j*n] = 0 ;
}
continue ;
}
cx = 0 ;
cz = 0 ;
while (pa < paend && pb < pbend)
{
/* The dot product looks like the merge in ssmergesort, except*/
/* no "clean-up" phase is need when one list is exhausted. */
ai = Ai [pa] ;
bi = Bi [pb] ;
if (ai == bi)
{
/* c += A (ai,i) * B (ai,j), and "consume" both entries */
if (!C_is_complex)
{
cx += Ax [pa] * Bx [pb] ;
}
else
{
/* complex case */
ax = Ax [pa] ;
bx = Bx [pb] ;
az = Az ? (ac ? (-Az [pa]) : Az [pa]) : 0.0 ;
bz = Bz ? (bc ? (-Bz [pb]) : Bz [pb]) : 0.0 ;
cx += ax * bx - az * bz ;
cz += az * bx + ax * bz ;
}
pa++ ;
pb++ ;
}
else if (ai < bi)
{
/* consume A(ai,i) and discard it, since B(ai,j) is zero */
pa++ ;
}
else
{
/* consume B(bi,j) and discard it, since A(ai,i) is zero */
pb++ ;
}
}
Cx [i+j*n] = cx ;
if (C_is_complex)
{
Cz [i+j*n] = cz ;
}
}
/* count the number of nonzeros in C(:,j) */
for (i = 0 ; i < n ; i++)
{
/* This could be done above, except for the gcc compiler bug when
cx is an 80-bit nonzero in register above, but becomes zero here
when stored into memory. We need the latter, to correctly handle
the case when cx underflows to zero in 64-bit floating-point.
Do not attempt to "optimize" this code by doing this test above,
unless the gcc compiler bug is fixed (as of gcc version 4.1.0).
*/
if (Cx [i+j*n] != 0 || (C_is_complex && Cz [i+j*n] != 0))
{
cnz++ ;
}
}
}
/* ---------------------------------------------------------------------- */
/* convert C to real if the imaginary part is all zero */
/* ---------------------------------------------------------------------- */
if (C_is_complex)
{
zallzero = 1 ;
for (p = 0 ; zallzero && p < cnzmax ; p++)
{
if (Cz [p] != 0)
{
zallzero = 0 ;
}
}
if (zallzero)
{
/* the imaginary part of C is all zero */
C_is_complex = 0 ;
mxFree (Cz) ;
Cz = NULL ;
}
}
/* ---------------------------------------------------------------------- */
/* allocate integer part of C but do not initialize it */
/* ---------------------------------------------------------------------- */
cnz = MAX (cnz, 1) ;
C = mxCreateSparse (0, 0, 0, C_is_complex ? mxCOMPLEX : mxREAL) ;
MXFREE (mxGetJc (C)) ;
MXFREE (mxGetIr (C)) ;
MXFREE (mxGetPr (C)) ;
MXFREE (mxGetPi (C)) ;
Cp = mxMalloc ((k + 1) * sizeof (Int)) ;
Ci = mxMalloc (MAX (cnz,1) * sizeof (Int)) ;
mxSetJc (C, (mwIndex *) Cp) ;
mxSetIr (C, (mwIndex *) Ci) ;
mxSetM (C, n) ;
mxSetN (C, k) ;
/* ---------------------------------------------------------------------- */
/* C = sparse (C). Note that this is done in-place. */
/* ---------------------------------------------------------------------- */
p = 0 ;
for (j = 0 ; j < k ; j++)
{
Cp [j] = p ;
for (i = 0 ; i < n ; i++)
{
cx = Cx [i+j*n] ;
cz = (C_is_complex ? Cz [i+j*n] : 0) ;
if (cx != 0 || cz != 0)
{
Ci [p] = i ;
Cx [p] = cx ;
if (C_is_complex) Cz [p] = (cc ? (-cz) : cz) ;
p++ ;
}
}
}
Cp [k] = p ;
/* ---------------------------------------------------------------------- */
/* reduce the size of Cx and Cz and return result */
/* ---------------------------------------------------------------------- */
if (cnz < cnzmax)
{
Cx = mxRealloc (Cx, cnz * sizeof (double)) ;
if (C_is_complex)
{
Cz = mxRealloc (Cz, cnz * sizeof (double)) ;
}
}
mxSetNzmax (C, cnz) ;
mxSetPr (C, Cx) ;
if (C_is_complex)
{
mxSetPi (C, Cz) ;
}
return (C) ;
}
|