1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
function stats = ssstats (A, kind, skip_chol, skip_dmperm, Z)
%SSSTATS compute matrix statistics for the SuiteSparse Matrix Collection
% Example:
% stats = ssstats (A, kind, skip_chol, skip_dmperm, Z)
%
% A: a sparse matrix
% kind: a string with the Problem.kind
% Z: empty, or a sparse matrix the same size as A. Only used for
% pattern_symmetry, nzero, and bandwidth statistics, described below.
%
% Requires amd, cholmod, RBio, and CSparse. Computes the following
% statistics, returning them as fields in the stats struct:
%
% nrows number of rows
% ncols number of columns
% nnz number of entries in A
% RBtype Rutherford/Boeing type
% isBinary 1 if binary, 0 otherwise
% isReal 1 if real, 0 if complex
% cholcand 1 if a candidate for sparse Cholesky, 0 otherwise
% numerical_symmetry numeric symmetry (0 to 1, where 1=symmetric)
% pattern_symmetry pattern symmetry (0 to 1, where 1=symmetric)
% nnzdiag nnz (diag (A)) if A is square, 0 otherwise
% nzero nnz (Z)
% nentries nnz (A) + nnz (Z)
% amd_lnz nnz(L) for chol(C(p,p)) where, C=A+A', p=amd(C)
% amd_flops flop count for chol(C(p,p)) where, C=A+A', p=amd(C)
% amd_vnz nnz in Householder vectors for qr(A(:,colamd(A)))
% amd_rnz nnz in R for qr(A(:,colamd(A)))
% nblocks # of blocks from dmperm
% sprank sprank(A)
% ncc # of strongly connected components
% posdef 1 if positive definite, 0 otherwise
% isND 1 if a 2D/3D problem, 0 otherwise
% isGraph 1 if a graph, 0 otherwise
% lowerbandwidth lower bandwidth, [i j]=find(A), max(0,max(i-j))
% upperbandwidth upper bandwidth, [i j]=find(A), max(0,max(j-i))
% rcm_lowerbandwidth lower bandwidth after symrcm
% rcm_upperbandwidth upper bandwidth after symrcm
% xmin smallest nonzero value
% xmax largest nonzero value
%
% amd_lnz and amd_flops are not computed for rectangular matrices.
%
% Ordering statistics are not computed for graphs (amd_*), since they are not
% linear systems. For directed or undirected graphs (square matrices that
% represent graph problems), the diagonal is typically not present, but it is
% implicitly present. Thus, sprank(A) is always equal to the # of rows, and
% nblocks is the same as ncc, for these problems. stats.sprank and
% stats.nblocks are left as -2.
%
% The bandwidth statistics include the Z matrix. For rectangular matrices,
% symrcm is not applicable, and the rcm_lowerbandwidth and rcm_upperbandwidth
% statistics are the same as the unpermuted versions, lowerbandwidth and
% upperbandwidth, respectively.
%
% If a statistic is not computed, it is set to -2. If an attempt to compute
% the statistic was made but failed, it is set to -1.
%
% See also ssget, ssindex, RBtype, amd, colamd, cs_scc, cs_sqr, dmperm,
% cholmod2, symrcm
% SuiteSparseCollection, Copyright (c) 2006-2019, Timothy A Davis.
% All Rights Reserved.
% SPDX-License-Identifier: GPL-2.0+
% Requires the SuiteSparse set of packages: CHOLMOD, RBio, CSparse
%-------------------------------------------------------------------------------
% ensure the matrix is sparse
%-------------------------------------------------------------------------------
if (~issparse (A))
A = sparse (A) ;
end
[m n] = size (A) ;
uncomputed = -2 ;
failure = -1 ;
if (nargin < 5)
Z = sparse (m,n) ;
AZ = A ;
else
AZ = A + Z ;
if (nnz (AZ) ~= nnz (A) + nnz (Z))
error ('A and Z overlap!')
end
end
if (nargin < 4)
skip_dmperm = 0 ;
end
if (nargin < 3)
skip_chol = 0 ;
end
if (nargin < 2)
kind = '' ;
end
%-------------------------------------------------------------------------------
% basic stats
%-------------------------------------------------------------------------------
tic ;
stats.nrows = m ;
stats.ncols = n ;
stats.nnz = nnz (A) ;
stats.RBtype = RBtype (AZ) ; % Rutherford/Boeing type
stats.isBinary = (stats.RBtype (1) == 'p') ;
stats.isReal = (stats.RBtype (1) ~= 'c') ;
fprintf ('RBtype: %s time: %g\n', stats.RBtype, toc) ;
%-------------------------------------------------------------------------------
% symmetry and Cholesky candidacy
%-------------------------------------------------------------------------------
% get the symmetry
tic ;
[s xmatched pmatched nzoffdiag nnzdiag] = spsym (A) ;
if (m ~= n)
stats.numerical_symmetry = 0 ;
stats.pattern_symmetry = 0 ;
elseif (nzoffdiag > 0)
stats.numerical_symmetry = xmatched / nzoffdiag ;
stats.pattern_symmetry = pmatched / nzoffdiag ;
else
stats.numerical_symmetry = 1 ;
stats.pattern_symmetry = 1 ;
end
psym_A = stats.pattern_symmetry ; % symmetry of the pattern of A (excluding Z)
stats.nnzdiag = nnzdiag ;
stats.cholcand = (s >= 6) ; % check if Cholesky candidate
stats.nzero = nnz (Z) ;
stats.nentries = stats.nnz + stats.nzero ;
fprintf ('cholcand: %d\n', stats.cholcand) ;
fprintf ('numerical_symmetry: %g pattern_symmetry: %g time: %g\n', ...
stats.numerical_symmetry, stats.pattern_symmetry, toc) ;
% recompute the pattern symmetry with Z included
tic ;
if (m == n && stats.nzero > 0)
[s xmatched pmatched nzoffdiag] = spsym (AZ) ;
if (nzoffdiag > 0)
stats.pattern_symmetry = pmatched / nzoffdiag ;
else
stats.pattern_symmetry = 1 ;
end
end
fprintf ('stats with A+Zeros:\n') ;
fprintf ('numerical_symmetry: %g pattern_symmetry: %g time: %g\n', ...
stats.numerical_symmetry, stats.pattern_symmetry, toc) ;
%-------------------------------------------------------------------------------
% bandwidth (includes explicit zeros)
%-------------------------------------------------------------------------------
[i j] = find (AZ) ;
stats.lowerbandwidth = max (0, max (i-j)) ;
stats.upperbandwidth = max (0, max (j-i)) ;
clear i j
fprintf ('lo %d up %d ', ...
stats.lowerbandwidth, stats.upperbandwidth) ;
% now with symrcm, if the matrix is square
stats.rcm_lowerbandwidth = stats.lowerbandwidth ;
stats.rcm_upperbandwidth = stats.upperbandwidth ;
if (m == n)
try
p = symrcm (AZ) ;
[i j] = find (AZ (p,p)) ;
stats.rcm_lowerbandwidth = max (0, max (i-j)) ;
stats.rcm_upperbandwidth = max (0, max (j-i)) ;
catch
fprintf ('================ symrcm failed ') ;
stats.rcm_lowerbandwidth = failure ;
stats.rcm_upperbandwidth = failure ;
end
fprintf ('rcm: lo %d up %d', ...
stats.rcm_lowerbandwidth, stats.rcm_upperbandwidth) ;
end
fprintf ('\n') ;
clear AZ i j p
%-------------------------------------------------------------------------------
% isND
%-------------------------------------------------------------------------------
s = 0 ;
if (~isempty (strfind (kind, 'structural')))
s = 1 ;
elseif (~isempty (strfind (kind, 'fluid')))
s = 1 ;
elseif (~isempty (strfind (kind, '2D')))
s = 1 ;
elseif (~isempty (strfind (kind, 'reduction')))
s = 1 ;
elseif (~isempty (strfind (kind, 'electromagnetics')))
s = 1 ;
elseif (~isempty (strfind (kind, 'semiconductor')))
s = 1 ;
elseif (~isempty (strfind (kind, 'thermal')))
s = 1 ;
elseif (~isempty (strfind (kind, 'materials')))
s = 1 ;
elseif (~isempty (strfind (kind, 'acoustics')))
s = 1 ;
elseif (~isempty (strfind (kind, 'vision')))
s = 1 ;
elseif (~isempty (strfind (kind, 'robotics')))
s = 1 ;
end
stats.isND = s ;
fprintf ('isND %d\n', stats.isND) ;
%-------------------------------------------------------------------------------
% determine if this is a graph (directed, undirected, or bipartite)
%-------------------------------------------------------------------------------
if (~isempty (strfind (kind, 'graph')) && isempty (strfind (kind, 'graphics')))
% this is a directed, undirected, or bipartite graph.
% it might also be a multigraph, and weighted or unweighted.
stats.isGraph = 1 ;
else
stats.isGraph = 0 ;
end
fprintf ('isGraph %d\n', stats.isGraph) ;
%-------------------------------------------------------------------------------
% determine if positive definite
%-------------------------------------------------------------------------------
fprintf ('start Cholesky\n') ;
tic ;
if (~stats.cholcand)
% not a candidate for Cholesky, so it cannot be positive definite
fprintf ('not a Cholesky candidate\n') ;
stats.posdef = 0 ;
elseif (stats.isBinary)
% For all symmetric binary matrices: only identity matrices are positive
% definite. All others are indefinite. Since at this point, A is a
% Cholesky candidate, and thus we know that A is symmetric with a zero-free
% diagonal. So just a quick check of nnz(A) is needed.
% See: McKay et al, "Acyclic Digraphs and Eigenvalues of (0,1)-Matrices",
% Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.3.
% http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Sloane/sloane15.html
stats.posdef = (stats.nnz == stats.nrows) ;
elseif (skip_chol)
% Cholesky was skipped
fprintf ('skip Cholesky\n') ;
stats.posdef = uncomputed ;
else
% try chol
try
[x, cstats] = cholmod2 (A, ones (stats.ncols,1)) ;
rcond = cstats (1) ;
fprintf ('rcond: %g\n', rcond) ;
stats.posdef = (rcond > 0) ;
catch
% chol failed
disp (lasterr) ;
fprintf ('sparse Cholesky failed\n') ;
stats.posdef = failure ;
end
clear x cstats
end
fprintf ('posdef: %d time: %g\n', stats.posdef, toc) ;
%-------------------------------------------------------------------------------
% transpose A if m < n, for ordering methods
%-------------------------------------------------------------------------------
tic ;
if (m < n)
try
A = A' ; % A is now tall and thin, or square
catch
disp (lasterr) ;
fprintf ('transpose failed...\n') ;
return ;
end
[m n] = size (A) ;
end
if (~isreal (A))
try
A = spones (A) ;
catch
disp (lasterr) ;
fprintf ('conversion from complex failed...\n') ;
return ;
end
end
fprintf ('computed A transpose if needed, time: %g\n', toc) ;
%-------------------------------------------------------------------------------
% order entire matrix with AMD, if square
%-------------------------------------------------------------------------------
if (m == n && ~stats.isGraph)
tic ;
try
if (psym_A < 1)
C = A|A' ; % A has unsymmetric pattern, so symmetrize it
else
C = A ; % A already has symmetric pattern
end
catch
disp (lasterr) ;
fprintf ('A+A'' failed\n') ;
end
fprintf ('computed A+A'', time: %g\nstart AMD\n', toc) ;
tic ;
try
p = amd (C) ;
c = symbfact (C (p,p)) ;
stats.amd_lnz = sum (c) ; % nnz (chol (C))
stats.amd_flops = sum (c.^2) ; % flop counts for chol (C)
catch
disp (lasterr) ;
fprintf ('amd failed\n') ;
stats.amd_lnz = failure ;
stats.amd_flops = failure ;
end
clear p c C
fprintf ('AMD lnz %d flops %g time: %g\n', ...
stats.amd_lnz, stats.amd_flops, toc) ;
else
% not computed if rectangular, or for graph problems
stats.amd_lnz = uncomputed ;
stats.amd_flops = uncomputed ;
fprintf ('AMD skipped\n') ;
end
%-------------------------------------------------------------------------------
% order entire matrix with COLAMD, for LU bounds
%-------------------------------------------------------------------------------
if (~stats.isGraph)
fprintf ('start colamd:\n') ;
tic ;
try
q = colamd (A) ;
[vnz,rnz] = cs_sqr (A (:,q)) ;
stats.amd_rnz = rnz ; % nnz (V), upper bound on L, for A(:,colamd(A))
stats.amd_vnz = vnz ; % nnz (R), upper bound on U, for A(:,colamd(A))
catch
disp (lasterr) ;
fprintf ('colamd2 and cs_sqr failed\n') ;
stats.amd_vnz = failure ;
stats.amd_rnz = failure ;
end
clear q
fprintf ('COLAMD rnz %d vnz %d time: %g\n', ...
stats.amd_rnz, stats.amd_vnz, toc) ;
else
% not computed for graph problems
stats.amd_rnz = uncomputed ;
stats.amd_vnz = uncomputed ;
fprintf ('COLAMD skipped\n') ;
end
%-------------------------------------------------------------------------------
% strongly connected components
%-------------------------------------------------------------------------------
tic ;
fprintf ('start scc:\n') ;
try
% find the # of strongly connected components of the graph of a square A,
% or # of connected components of the bipartite graph of a rectangular A.
if (m == n)
[p r] = cs_scc (A) ;
else
[p r] = cs_scc (spaugment (A)) ;
end
stats.ncc = length (r) - 1 ;
clear p r
catch
disp (lasterr) ;
fprintf ('cs_scc failed\n') ;
stats.ncc = failure ;
end
fprintf ('scc %d, time: %g\n', stats.ncc, toc) ;
%-------------------------------------------------------------------------------
% Dulmage-Mendelsohn permutation, and order each block
%-------------------------------------------------------------------------------
tic ;
if (m == n && stats.isGraph && isempty (strfind (kind, 'bipartite')))
% for directed and undirected graphs (square matrices), the diagonal is
% implicitly present. Thus, nblocks is the same as ncc, and the graph has
% full sprank. dmperm *is* computed for bipartite graphs, however.
skip_dmperm = 1 ;
end
if (skip_dmperm)
fprintf ('skip dmperm\n') ;
stats.nblocks = uncomputed ;
stats.sprank = uncomputed ;
else
try
% find the Dulmage-Mendelsohn decomposition
fprintf ('start dmperm:\n') ;
% [p,q,r,s,cc,rr] = cs_dmperm (A) ;
[p,q,r,s,cc,rr] = dmperm (A) ;
nblocks = length (r) - 1 ;
stats.nblocks = nblocks ; % # of blocks in block-triangular form
stats.sprank = rr(4)-1 ; % structural rank
catch
disp (lasterr) ;
fprintf ('dmperm failed\n') ;
stats.nblocks = failure ;
stats.sprank = failure ;
end
end
fprintf ('nblocks %d\n', stats.nblocks) ;
fprintf ('sprank %d, time: %g\n', stats.sprank, toc) ;
%-------------------------------------------------------------------------------
% xmin and xmax
%-------------------------------------------------------------------------------
[i,j,x] = find (A) ;
stats.xmin = min (x) ;
stats.xmax = max (x) ;
fprintf ('xmin %32.16g xmax %32.16g\n', stats.xmin, stats.xmax) ;
if (stats.xmin == 0 || stats.xmax == 0)
error ('explicit zeros in the matrix!') ;
end
%-------------------------------------------------------------------------------
fprintf ('ssstats done\n') ;
|