1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  
     | 
    
      function [nfailures SJid_failures] = demo_spqr_rank (ids,args)
%DEMO_SPQR_RANK lengthy demo for spqr_rank functions (requires SJget)
% Usage: demo_spqr_rank(ids,args)
%
% This is a demonstration program for the routines spqr_basic, spqr_null,
% spqr_pinv, spqr_cod discussed in the paper "Algorithm xxx: Reliable
% Calculation of Numerical Rank, Null Space Bases, Pseudoinverse Solutions and
% Basic Solutions using SuiteSparseQR" by Leslie Foster and Timothy Davis,
% submitted ACM Transactions on Mathematical Software, 2011.  Plots similar to
% those in Figures 2 - 5 in the paper are reproduced.
%
% If the first argument ids is a negative scalar, than the smallest (-ids)
% matrices from the SJ Collection are used for the tests.  Otherwise, ids is
% a list of matrix IDs to use for the tests.
%
% If demo_spqr_rank has a second input parameter the second parameter
% controls options in the demonstration program.  For example if the second
% parameter is one then the routine produces plots similar to only those in
% Figure 2 of the paper and if the second parameter is zero then no plots
% are produced. These last two cases run more quickly than the default case.
% The second parameter can also be a structure (for details see the comments
% in the body of the code prior to the first executable statement).
%
% Examples:
%    demo_spqr_rank    % test code for 100 matrices, create 4 figures
% or
%    demo_spqr_rank(-200); % test code for 200 matrices, create 4 figures
% or
%    demo_spqr_rank(-300,1); % test code for 300 matrices, create one figure
%
% See also spqr_basic, spqr_null, spqr_pinv, spqr_cod, SJget.
% spqr_rank, Copyright (c) 2012, Leslie Foster and Timothy A Davis.
% All Rights Reserved.
% SPDX-License-Identifier: BSD-3-clause
% Potential run times:
%        demo_spqr_rank can require 20 seconds
%        demo_spqr_rank(-300,1) can require a couple of minutes
%        demo_spqr_rank(-300,2) can require 15 minutes
%        demo_spqr_rank(-640,1) can require 5 hours
% The function creates a file save_samples_demo_spqr_rank containing many
% of the local variable used in demo_spqr_rank.  demo_spqr_rank(0) uses
% the file to redraw plots of the last run of demo_spqr_rank.   Also
%
%   load save_samples_demo_spqr_rank
%
% can be used to load and examine these local variables in the main MATLAB
% workspace.
% The second parameter can be a structure with any of the following fields 
% demo_opts.figures (default 2)
%    0 -- produce no plots
%    1 -- produce plots similar to those in figure 2
%    2 -- produce plots similar to those in figures 2 through 5
% demo_opts.null_spaces (default is 1)
%    0 -- return no null space bases (when allowed)
%    1 -- return one null space basis (of A or of A')
%    2 -- return null spaces bases of A and A' (when allowed)
% demo_opts.doprint (default is 0)
%   -1 -- do not print out anything
%    0 -- only print out a summary of the success of the programs
%    1 -- in demo_spqr_rank print out a summary of the
%         purpose of the demo_spqr_rank, a discussion of the plots
%         produced and information about the success of the programs
% demo_opts.start_with_A_transpose (default is 0)
%    0 -- in spqr_cod start with a QR  factorization of A
%    1 -- in spqr_cod start with a QR factorization of A transpose
% demo_opts.implicit_null_space_basis (default is 1)
%    1 -- return the null space basis in implicit form as Householder
%         transformations
%    0 -- return the null space basis as columns of an explicit matrix
% demo_opts.repeatable (default is 1)
%    1 -- reproduce exactly the same random numbers
%         for each run so that results are repeatable
%    0 -- the random number stream will be different on repeated runs
% demo_opts.nsvals (default is 1)                       
%    the number of small and large singular values to estimate
% demo_opts.get_details (default is 0, but can be modified by demo_opts.figures)
%    0 -- return basic statistics in spqr_basic, spqr_null, etc.
%    1 -- return detailed statistics in spqr_basic, spqr_null, etc.
%    2 -- return basic statistics and a few additional statistics needed
%         for communication between routines
% demo_opts.tol_norm_type (default is 0)
%    0 -- let tol = max( size(A) ) * eps( norm(A) ) where norm(A) is determined
%         using the precomputed singular values in the SJSingular Data Base
%         or (for figures = 2) by MATLAB's dense matrix SVD
%    1 -- compute the default tolerance tol = max( size(A) ) * eps( norm (A,1) )
%    2 -- compute the default tolerance tol = max( size(A) ) *
%                                             eps( normest (A,0.01) )
if (nargin < 1)
    ids = -100;
end
demo_opts = struct('figures', 2, ...
                   'null_spaces', 1, ...
                   'doprint', 1, ...
                   'start_with_A_transpose', 0, ...
                   'implicit_null_space_basis', 1, ...
                   'repeatable', 1 , ...
                   'nsvals', 1 , ...
                   'get_details', 0, ...
                   'tol_norm_type', 0) ;
if (nargin == 2)
    %override default values using second argument
   if isreal(args)
       demo_opts.figures = args ;
   else
       % assumes that args is a structure
        names_args = fieldnames(args) ;
        for i = 1 : length(names_args)
            demo_opts.(names_args{i}) = args.(names_args{i}) ;
        end
   end
end
% values of get_details and null_spaces restricted by demo_opts.figures:
if demo_opts.figures == 1
    demo_opts.get_details = max(1, demo_opts.get_details) ;
elseif demo_opts.figures == 2
    demo_opts.get_details = 1 ;
    demo_opts.null_spaces = max(1,demo_opts.null_spaces) ;
end
% SPQR_BASIC, SPQR_NULL, SPQR_PINV and SPQR_COD return null space bases stored
% in an implicit form by default.  To have the routines return null space bases
% as explicit matrices, use args(4) = 0.  To have the routines return a null
% space bases in the form that requires less memory, use args(4) = 2.
opts.get_details = demo_opts.get_details ;
opts.repeatable = demo_opts.repeatable ;
opts.implicit_null_space_basis = demo_opts.implicit_null_space_basis ;
if (demo_opts.doprint > 0)
    disp(' ')
    disp(['This program demonstrates use of the routines SPQR_BASIC, '...
          'SPQR_NULL, SPQR_PINV,'])
    disp(['and SPQR_COD discussed in the paper "Algorithm xxx: ',...
          'Reliable Calculation of'])
    disp(['Numerical Rank, Null Space Bases, Pseudoinverse Solutions and ',...)
          ' Basic Solutions'])
    disp(['using SuiteSparseQR" by Leslie Foster and Timothy Davis, ',...
         'submitted ACM'])
    disp(['Transactions on Mathematical Software, 2011.  Plots similar ',...
           'to those in Figures'])
    disp(['2 - 5 or, optionally, just Figure 2 in the paper are ',...
          'reproduced, except the'])
    disp(['sample set is restricted to small matrices so that the demo ',...
          'runs quickly. The'])
    disp(['matrices come from the San Jose State University Singular ',...
          'Matrix Database.'])
    disp(' ')
    disp('The routines are designed to work with rank deficient matrices.')
    disp('The primary use of each routine is:')
    disp('    SPQR_BASIC -- determine a basic solution to min ||b - A x||')
    disp(['    SPQR_NULL  -- determine an orthonormal basis for the ',...
          'numerical nullspace'])
    disp('                  of A')
    disp(['    SPQR_PINV  -- determine a pseudoinverse or mininimum ',...
          'norm solutio to'])
    disp('                  min || b - A x||')
    disp(['    SPQR_COD   -- determine a pseudoinverse or mininimum norm ',...
          'solution to'])
    disp(['                  min || b - A x|| using a complete orthogonal ',...
          'decomposition.'])
    disp('The demonstration program creates plots that illustrate the accuracy')
    disp('of rank determination, the accuracy of the null space bases, the')
    disp(['accuracy of the basic solutions and the accuracy of the ',...
          'pseudoinverse'])
    disp('solutions.  The above routines are compared with the calculations')
    disp('using MATLAB''s SVD, MATLAB''s dense matrix QR factorization and')
    disp(['with SPQR_SOLVE, part of SuiteSparseQR. In the demonstration ',...
          'program'])
    disp('the tolerance defining the numerical rank is min(m,n)*eps(||A||)')
    disp('where the matrix A is m by n.')
    %disp(' ')
    % if (demo_opts.dopause)
    %     disp('Press enter to begin demonstration')
    %     pause
    % end
    disp(' ')
end
mfilename ('fullpath') ;
install_SJget ;
% intitialze
index = SJget;
if (isscalar (ids) && ids < 0)
    % test with matrices 1 to (-ids)
    dim = max (index.nrows, index.ncols) ;
    % R2009b introduced '~' to denote unused output arguments, but we avoid that
    % feature so that this code can run on R2008a (and perhaps earlier).
    [ignore,indexs] = sort (dim) ;                                          %#ok
    clear ignore
    indexs = indexs (1:(-ids)) ;
elseif (isscalar (ids) && (ids == 0))
    % the file save_samples_demo_spqr_rank is created
    %    when demo_spqr_rank is run
    if exist('save_samples_demo_spqr_rank.mat','file')
        load save_samples_demo_spqr_rank
    else
        error (['prior to running demo_spqr_rank(0) run ' ...
                'demo_spqr_rank(ids) with ids < 0 or ids a list of IDs']) ;
    end
    % demo_spqr_rank(0) can be used to redraw plots of the last
    % run of demo_spqr_rank.   Also the command
    % load save_samples_demo_spqr_rank
    % can be used to load many of the local variables used in
    % demo_spqr_rank into the main MATLAB workspace.
else
    % list of matrix ID's has been passed in directly
    indexs = ids ;
end
cnt = 0;
time_start = clock;
%-------------------------------------------------------------------------------
% allocate space for vectors containing statistics calculated
%-------------------------------------------------------------------------------
nothing = -ones (1,length (indexs)) ;
rank_svd_v = nothing ;
gap_v = nothing ;
m_v = nothing ;
n_v = nothing ;
flag_spqr_basic_v = nothing ;
rank_svd_basic_v = nothing ;
rank_spqr_basic_v = nothing ;
rank_spqr_from_spqr_basic_v = nothing ;
flag_spqr_null_v = nothing ;
rank_svd_null_v = nothing ;
rank_spqr_null_v = nothing ;
rank_spqr_from_spqr_null_v = nothing ;
flag_spqr_pinv_v = nothing ;
rank_svd_pinv_v = nothing ;
rank_spqr_pinv_v = nothing ;
rank_spqr_from_spqr_pinv_v = nothing ;
flag_spqr_cod_v = nothing ;
rank_svd_cod_v = nothing ;
rank_spqr_cod_v = nothing ;
rank_spqr_from_spqr_cod_v = nothing ;
tol_v = nothing ;
norm_A_v = nothing ;
norm_A_N_svd_v = nothing ;
norm_A_NT_svd_v = nothing ;
norm_A_NT_spqr_basic_v = nothing ;
norm_A_N_spqr_null_v = nothing ;
norm_A_N_spqr_pinv_v = nothing ;
norm_A_N_spqr_cod_v = nothing ;
norm_x_pinv_v = nothing ;
norm_x_QR_dense_v = nothing ;
norm_r_QR_dense_v = nothing ;
norm_x_spqr_basic_v = nothing ;
norm_r_spqr_basic_v = nothing ;
norm_x_spqr_solve_v = nothing ;
norm_r_spqr_solve_v = nothing ;
norm_x_spqr_pinv_minus_x_pinv_v = nothing ;
norm_x_spqr_cod_minus_x_pinv_v = nothing ;
cond1_pinv_v = nothing ;
cond1_cod_v = nothing ;
norm_w_cod_v = nothing ;
norm_w_pinv_v = nothing ;
% ignore warnings from inverse power method in ssi
user_warning_state = warning ('off', 'spqr_rank:overflow') ;
% begin the calculations
if (demo_opts.doprint > 0)
    disp('Begin calculations')
    disp(' ')
end
for i = indexs
    cnt = cnt + 1;
    if (demo_opts.doprint > 0)
        fprintf ('.') ;
        if (mod (cnt,50) == 0)
            fprintf ('\n') ;
        end
    end
    %---------------------------------------------------------------------------
    % generate the problem
    %---------------------------------------------------------------------------
    % select matrix from SJSU singular matrices
    Problem = SJget(i,index) ;
    A=Problem.A ;
    [m,n]=size(A);
    private_stream = spqr_repeatable (opts.repeatable) ;
    if (~isempty (private_stream))
        b1 = randn (private_stream, m, 1) ;
        x2 = randn (private_stream, n, 1) ;
    else
        b1 = randn (m,1) ;
        x2 = randn (n,1) ;
    end
    b2 = A*x2;         % consistent right hand side
    b = [ b1, b2 ];
    %---------------------------------------------------------------------------
    % for demo_opts.figures == 2 find numerical rank, null space basis, 
    %     pseudoinverse soln using MATLAB svd
    % for demo_opts.figures <= 1 find numerical rank using precomputed sing.
    %     values in SJsingular database
    %---------------------------------------------------------------------------
    if demo_opts.figures <= 1
        % use the precomputed singular values from the SJsingular database
        s = Problem.svals;
        normA = max(s);
        tol = max(m,n) * eps( normA );
        rank_svd = SJrank(Problem,tol);
    else
        [U,S,V] = svd(full(A));
        if m > 1, s = diag(S);
        elseif m == 1
            s = S(1);
        else
            s = 0;
        end
        normA= max(s);
        tol = max(m,n) * eps(normA);
        rank_svd = sum(s > tol);
    end
    if (rank_svd == 0)
        gap = NaN;
    else
       if rank_svd < min(m,n)
           gap = s(rank_svd) / abs(s(rank_svd + 1));
       else
           gap = Inf;
       end
    end
    if demo_opts.figures == 2
        if (rank_svd == 0)
           pseudoinverse_svd = zeros(size(A'));
           N_svd = eye(n,n);
           NT_svd = eye(m,m);
        else
           S_pinv = diag(ones(rank_svd,1)./s(1:rank_svd));
           pseudoinverse_svd = V(:,1:rank_svd)*S_pinv*U(:,1:rank_svd)';
           N_svd = V(:,rank_svd+1:end);
           NT_svd = U(:,rank_svd+1:end);
        end
        x_pinv = pseudoinverse_svd * b(:,1);  % the plots only use x_pinv
                                              % for b(:,1), the random rhs
        norm_x_pinv = norm(x_pinv);
        norm_A_N_svd = norm(A*N_svd);
        norm_A_transpose_NT_svd = norm(A'*NT_svd);
        % find basic solution using MATLAB's dense QR routine
        warning_state = warning ('off','MATLAB:rankDeficientMatrix') ;
        if m ~= n
            x = full(A) \ b;
        else
            x = full([A,zeros(m,1)]) \ b;
            x = x(1:n,:);
        end
        warning (warning_state) ;           % restore the warnings
        norm_x_QR_dense = norm(x(:,1)) ;  %the plots only use ||x||
                                          % for the random rhs b(:,1)
        r = b(:,2)- A*x(:,2);             % the plots only use r for
                                          % the consistent rhs b(:,2)
        norm_r_QR_dense = norm(r) / norm(b(:,2));
    end
    %---------------------------------------------------------------------------
    % run spqr_basic, spqr_null, spqr_pinv and spqr_cod:
    %---------------------------------------------------------------------------
    if demo_opts.tol_norm_type == 0
       opts.tol = tol;
    else
       opts.tol_norm_type = demo_opts.tol_norm_type;
       % calculate tol inside spqr_basic, spqr_null, spqr_pinv and spqr_cod
    end
    % SPQR_COD uses a complete orthogonal decomposition (COD) of A.  By
    % default the COD is constructed by first factoring A. To select the
    % option for SPQR_COD which initially factors A', which can have
    % different numerical properties, use args(1) = 1.
    opts.start_with_A_transpose = demo_opts.start_with_A_transpose ;
    opts.nsvals_small = demo_opts.nsvals;
    opts.nsvals_large = demo_opts.nsvals;
    if demo_opts.null_spaces == 2
        [x_spqr_basic, stats_basic, NT_spqr_basic] = spqr_basic (A,b,opts) ;
        [N_spqr_null, stats_null] = spqr_null (A,opts) ;
        [x_spqr_pinv, stats_pinv, N_spqr_pinv, NT] = spqr_pinv (A,b,opts) ; %#ok
        [x_spqr_cod, stats_cod, N_spqr_cod, NT] = spqr_cod (A,b,opts) ;     %#ok
    elseif demo_opts.null_spaces == 1
        [x_spqr_basic, stats_basic, NT_spqr_basic] = spqr_basic (A,b,opts) ;
        [N_spqr_null, stats_null] = spqr_null (A,opts) ;
        [x_spqr_pinv, stats_pinv, N_spqr_pinv] = spqr_pinv (A,b,opts) ;
        [x_spqr_cod, stats_cod, N_spqr_cod] = spqr_cod (A,b,opts) ;
    else
        [x_spqr_basic, stats_basic] = spqr_basic (A,b,opts) ;
        [N_spqr_null, stats_null] = spqr_null (A,opts) ;
        [x_spqr_pinv, stats_pinv] = spqr_pinv (A,b,opts) ;
        [x_spqr_cod, stats_cod] = spqr_cod (A,b,opts) ;
    end
    %---------------------------------------------------------------------------
    % calculate and save results for figures displaying ranks:
    %---------------------------------------------------------------------------
    rank_svd_v(cnt) = rank_svd;
    gap_v(cnt) = gap;
    m_v(cnt) = m;
    n_v(cnt) = n;
    % spqr_basic results:
    flag_spqr_basic_v(cnt) = stats_basic.flag;
    if stats_basic.flag == 1
        % use tol_alt returned by spqr_basic to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_basic_v(cnt)=  sum(s > stats_basic.tol_alt);
        else
            rank_svd_basic_v(cnt)=  SJrank(Problem,stats_basic.tol_alt);
        end
    else
        % rank_svd_basic_v(cnt)=  rank_svd_v(cnt);
        % use tol returned by spqr_basic to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_basic_v(cnt)=  sum(s > stats_basic.tol);
        else
            rank_svd_basic_v(cnt)=  SJrank(Problem,stats_basic.tol);
        end
    end
    if stats_basic.flag <= 3
        rank_spqr_basic_v(cnt) = stats_basic.rank ;
    end
    if demo_opts.figures >= 1
        rank_spqr_from_spqr_basic_v(cnt) = stats_basic.rank_spqr ;
    else
        rank_spqr_from_spqr_null_v(cnt) = -1;   % not calculated
    end
    % spqr_null results:
    flag_spqr_null_v(cnt) = stats_null.flag;
    if stats_null.flag == 1
        % use tol_alt returned by spqr_null to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_null_v(cnt) =  sum(s > stats_null.tol_alt);
        else
            rank_svd_null_v(cnt) =  SJrank(Problem,stats_null.tol_alt);
        end
    else
        % rank_svd_null_v(cnt)=  rank_svd_v(cnt);  
        % use tol returned by spqr_null to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_null_v(cnt)=  sum(s > stats_null.tol);
        else
            rank_svd_null_v(cnt)=  SJrank(Problem,stats_null.tol);
        end
    end
    if stats_null.flag <= 3
        rank_spqr_null_v(cnt) = stats_null.rank ;
    end
    if demo_opts.figures >= 1
        rank_spqr_from_spqr_null_v(cnt) = stats_null.rank_spqr ;
    else
        rank_spqr_from_spqr_null_v(cnt) = -1 ;    % not calculated
    end
    % spqr_pinv results:
    flag_spqr_pinv_v(cnt) = stats_pinv.flag;
    if stats_pinv.flag == 1
        % use tol_alt returned by spqr_pinv to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_pinv_v(cnt) =  sum(s > stats_pinv.tol_alt);
        else
           rank_svd_pinv_v(cnt) =  SJrank(Problem,stats_pinv.tol_alt);
        end
    else
        % rank_svd_pinv_v(cnt)=  rank_svd_v(cnt);
        % use tol returned by spqr_pinv to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_pinv_v(cnt)=  sum(s > stats_pinv.tol);
        else
            rank_svd_pinv_v(cnt)=  SJrank(Problem,stats_pinv.tol);
        end
        
    end
    if stats_pinv.flag <= 3
        rank_spqr_pinv_v(cnt) = stats_pinv.rank ;
    end
    if demo_opts.figures >= 1
        rank_spqr_from_spqr_pinv_v(cnt) = stats_pinv.rank_spqr ;
    else
        rank_spqr_from_spqr_pinv_v(cnt) = -1 ;     % not calculated
    end
    % spqr_cod results:
    flag_spqr_cod_v(cnt) = stats_cod.flag;
    if stats_cod.flag == 1
        % use tol_alt returned by spqr_cod to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_cod_v(cnt)=  sum(s > stats_cod.tol_alt);
        else
            rank_svd_cod_v(cnt) =  SJrank(Problem,stats_cod.tol_alt);
        end
    else
        % rank_svd_cod_v(cnt)=  rank_svd_v(cnt);
        % use tol returned by spqr_cod to determine true num. rank
        if demo_opts.figures == 2
            rank_svd_cod_v(cnt)=  sum(s > stats_cod.tol);
        else
            rank_svd_cod_v(cnt)=  SJrank(Problem,stats_cod.tol);
        end
        
    end
    if stats_cod.flag <= 3
        rank_spqr_cod_v(cnt) = stats_cod.rank ;
    end
    if demo_opts.figures >= 1
        rank_spqr_from_spqr_cod_v(cnt) = stats_cod.rank_spqr ;
    else
        rank_spqr_from_spqr_cod_v(cnt) = -1 ;     % not calculated
    end
    tol_v(cnt) = tol;
    norm_A_v(cnt) = normA;
    if demo_opts.figures == 2
        %----------------------------------------------------------------------
        % calculate and save results for figures displaying null space accuracy
        %----------------------------------------------------------------------
        norm_A_N_svd_v(cnt) = norm_A_N_svd;
        norm_A_NT_svd_v(cnt) = norm_A_transpose_NT_svd;
        if stats_basic.flag <= 3
           % use spqr_null_mult to form NT_spqr_basic' * A
           A_transpose_times_NT = spqr_null_mult(NT_spqr_basic,A,0);
           norm_A_NT_spqr_basic_v(cnt) = norm(full( A_transpose_times_NT ));
           % For large matrices, rather than forming A_transpose_times_NT,
           % it is more efficient to use the estimate of
           % ||A' * NT_spqr_basic|| calculated by SPQR_BASIC (using spqr_ssp)
           % when SPQR_BASIC returns a null space bases:
           % norm_A_NT_spqr_basic_v(cnt) = ...
           %            stats_basic.est_norm_A_transpose_times_NT;
        end
        if stats_null.flag <= 3
           % use spqr_null_mult to form  A * N_spqr_null
           A_times_N = spqr_null_mult(N_spqr_null,A,3);
           norm_A_N_spqr_null_v(cnt) = norm(full( A_times_N ));
           % For large matrices, rather than forming A_times_N,
           % it is more efficient to use the estimate of
           % ||A * N|| calculated by SPQR_NULL (using spqr_ssp):
           % norm_A_N_spqr_null_v(cnt) = stats_null.est_norm_A_times_N;
        end
        if stats_pinv.flag <= 3
           % use spqr_null_mult to form  A * N_spqr_pinv
           A_times_N = spqr_null_mult(N_spqr_pinv,A,3);
           norm_A_N_spqr_pinv_v(cnt) = norm(full( A_times_N ));
           % For large matrices, rather than forming A_times_N,
           % it is more efficient to use the estimate of
           % ||A * N|| calculated by SPQR_PINV (using spqr_ssp):
           % norm_A_N_spqr_pinv_v(cnt) = stats_pinv.est_norm_A_times_N;
        end
        if stats_cod.flag <= 3
           % use spqr_null_mult to form  A * N_spqr_cod
           A_times_N = spqr_null_mult(N_spqr_cod,A,3);
           norm_A_N_spqr_cod_v(cnt) = norm(full( A_times_N ));
           % For large matrices, rather than forming A_times_N,
           % it is more efficient to use the estimate of
           % ||A * N|| calculated by SPQR_COD (using spqr_ssp):
           % norm_A_N_spqr_cod_v(cnt) = stats_cod.est_norm_A_times_N;
        end
        %----------------------------------------------------------------------
        % calculate and save results for basic solutions plots
        %----------------------------------------------------------------------
        % norm_x_pinv, norm_x_QR_dense and norm_r_QR_dense already computed
        norm_x_pinv_v(cnt) = norm_x_pinv;
        norm_x_QR_dense_v(cnt) = norm_x_QR_dense;
        norm_r_QR_dense_v(cnt) = norm_r_QR_dense;
        norm_x_spqr_basic_v(cnt) = norm(x_spqr_basic(:,1)) ;
        norm_r_spqr_basic_v(cnt) = norm(b(:,2) - A * x_spqr_basic(:,2)) / ...
             norm(b(:,2));
        opts_spqr_solve.tol = stats_basic.tol;
        warning_state = warning ('off','MATLAB:rankDeficientMatrix') ;
        x_spqr_solve = spqr_solve (sparse(A), b, opts_spqr_solve) ;
        warning (warning_state) ;
        norm_x_spqr_solve_v(cnt) = norm(x_spqr_solve(:,1));
        norm_r_spqr_solve_v(cnt) = norm(b(:,2) - A * x_spqr_solve(:,2)) / ...
            norm(b(:,2));
        %----------------------------------------------------------------------
        % calculate and save results for pinv solutions plots
        %----------------------------------------------------------------------
        if stats_pinv.flag <= 3
            norm_x_spqr_pinv_minus_x_pinv_v(cnt) = ...
               norm(x_spqr_pinv(:,1)-x_pinv) / norm(x_pinv);
        end
        if stats_cod.flag <= 3
            norm_x_spqr_cod_minus_x_pinv_v(cnt) = ...
               norm(x_spqr_cod(:,1)-x_pinv) / norm(x_pinv);
        end
        cond1_cod_v(cnt) = s(1) / s( rank_svd_cod_v(cnt) );
        cond1_pinv_v(cnt) = s(1) / s( rank_svd_pinv_v(cnt) );
        norm_w_cod_v(cnt) = stats_cod.info_spqr1.norm_E_fro ;    
        norm_w_pinv_v(cnt) = max( ...
           stats_pinv.stats_spqr_basic.info_spqr1.norm_E_fro, ...
           stats_pinv.stats_spqr_null.info_spqr1.norm_E_fro) ;
    end
    %---------------------------------------------------------------------------
    % save results to a *.mat file for future reference
    %---------------------------------------------------------------------------
    if ( mod(cnt,10) == 0 || cnt == length(indexs)  && cnt > 1)
        % save the information needed to draw the plots;
        % if later the code is run with ids = 0
        %      save_samples_demo_spqr_rank will be loaded
        time_required = etime(clock,time_start);
        save save_samples_demo_spqr_rank ...
             rank_svd_basic_v rank_spqr_basic_v flag_spqr_basic_v ...
             rank_svd_null_v  rank_spqr_null_v  flag_spqr_null_v ...
             rank_svd_pinv_v  rank_spqr_pinv_v  flag_spqr_pinv_v ...
             rank_svd_cod_v   rank_spqr_cod_v   flag_spqr_cod_v  ...
             rank_spqr_from_spqr_basic_v gap_v tol_v ...
             rank_spqr_from_spqr_null_v ...
             rank_spqr_from_spqr_pinv_v ...
             rank_spqr_from_spqr_cod_v ...
             norm_A_NT_svd_v norm_A_NT_spqr_basic_v ...
             norm_A_N_svd_v norm_A_N_spqr_null_v ...
             norm_A_N_spqr_pinv_v ...
             norm_A_N_spqr_cod_v ...
             norm_x_pinv_v norm_x_QR_dense_v  norm_r_QR_dense_v ...
             norm_x_spqr_basic_v  norm_r_spqr_basic_v ...
             norm_x_spqr_solve_v  norm_r_spqr_solve_v ...
             norm_x_spqr_pinv_minus_x_pinv_v ...
             norm_x_spqr_cod_minus_x_pinv_v cond1_pinv_v cond1_cod_v ...
             norm_w_cod_v  norm_w_pinv_v norm_A_v ...
             cnt time_required indexs m_v n_v rank_svd_v ...
             demo_opts
    end
end
% restore user's warning state
warning (user_warning_state) ;
% if (demo_opts.dopause)
%     disp('Press enter to see the first plot')
%     pause
% end
if demo_opts.figures >= 1
    %---------------------------------------------------------------------------
    % plot information for calculated ranks
    %---------------------------------------------------------------------------
    figure(1)
    subplot(2,2,1)
    plot_ranks(rank_svd_basic_v,rank_spqr_basic_v,...
        rank_spqr_from_spqr_basic_v,flag_spqr_basic_v,gap_v,'SPQR\_BASIC')
    subplot(2,2,2)
    plot_ranks(rank_svd_null_v,rank_spqr_null_v,rank_spqr_from_spqr_null_v,...
        flag_spqr_null_v,gap_v,'SPQR\_NULL')
    subplot(2,2,3)
    plot_ranks(rank_svd_pinv_v,rank_spqr_pinv_v,rank_spqr_from_spqr_pinv_v,...
        flag_spqr_pinv_v,gap_v,'SPQR\_PINV')
    subplot(2,2,4)
    plot_ranks(rank_svd_cod_v,rank_spqr_cod_v,rank_spqr_from_spqr_cod_v,...
        flag_spqr_cod_v,gap_v,'SPQR\_COD')
    if (demo_opts.doprint > 0)
        disp(' ')
        if demo_opts.figures == 1
           disp('In the figure for each of SPQR_BASIC, SPQR_NULL, ')
        else
           disp('In the first figure for each of SPQR_BASIC, SPQR_NULL, ')
        end
        disp('SPQR_PINV, SPQR_COD and for SPQR the plots summarize the percent')
        disp('of matrices where the calculated numerical rank is correct and')
        disp('the percent of the matrices where the warning flag indicates')
        disp('that the calculated numerical rank is correct with a warning')
        disp('flag either 0 or 1 versus the singular value gap, the ratio of')
        disp('singular number r over singular value number r+1, where r is the')
        disp('calculated numerical rank.')
        disp(' ')
        disp('Note that the percent of the matrices where the new routines ')
        disp('calculate the correct numerical rank approaches 100 percent')
        disp('as the singular value gap increases.')
        disp(' ')
        disp('The plot is best seen as a full screen plot.')
        disp(' ')
        % if (demo_opts.dopause)
        %     disp('Press enter to view the second figure')
        %     pause
        % end
    end
end
drawnow
if demo_opts.figures == 2
    %---------------------------------------------------------------------------
    % plot information for null spaces
    %---------------------------------------------------------------------------
    figure(2)
    subplot(2,2,1)
    plot_null_spaces(norm_A_NT_svd_v,tol_v, ...
           norm_A_NT_spqr_basic_v,flag_spqr_basic_v,'SPQR\_BASIC')
    subplot(2,2,2)
    plot_null_spaces(norm_A_N_svd_v,tol_v, ...
           norm_A_N_spqr_null_v,flag_spqr_null_v,'SPQR\_NULL')
    subplot(2,2,3)
    plot_null_spaces(norm_A_N_svd_v,tol_v, ...
           norm_A_N_spqr_pinv_v,flag_spqr_pinv_v,'SPQR\_PINV')
    subplot(2,2,4)
    plot_null_spaces(norm_A_N_svd_v,tol_v, ...
           norm_A_N_spqr_cod_v,flag_spqr_cod_v,'SPQR\_COD')
    if (demo_opts.doprint > 0)
        disp(' ')
        disp('In the second figure ||AN||, where N is a calculated')
        disp('orthonormal basis for the numerical null space, or, in the case')
        disp('of SPQR_BASIC, ||(transpose of A) N||, normalized by the ')
        disp('tolerance defining the numerical rank, is plotted for null')
        disp('space bases calculated by MATLAB''s SVD and by SPQR_BASIC,')
        disp('SPQR_NULL, SPQR_PINV and SPQR_COD.')
        disp(' ')
        disp('Note that the null space bases calculated by the new routines')
        disp('are generally as good as the bases calculated by MATLAB''s SVD.')
        disp('The tolerance used for normalization in the plots is ')
        disp('O(relative machine precision times ||A||).')
        disp(' ')
        disp('The plot is best seen as a full screen plot.')
        disp(' ')
        % if (demo_opts.dopause)
        %     disp('Press enter to view the third figure')
        %     pause
        % end
    end
    drawnow
    %---------------------------------------------------------------------------
    % plot information for basic solutions
    %---------------------------------------------------------------------------
    figure(3)
    plot_basic(norm_x_pinv_v,norm_x_QR_dense_v, norm_r_QR_dense_v, ...
        norm_x_spqr_basic_v, norm_r_spqr_basic_v, ...
        norm_x_spqr_solve_v, norm_r_spqr_solve_v,flag_spqr_basic_v)
    if (demo_opts.doprint)
        disp(' ')
        disp('In the third figure the left plot pictures ||x|| / ||x_PINV|| ')
        disp('where x is a basic solution to min || b - A x ||')
        disp('calculated by MATLAB''s dense matrix QR algorithm,')
        disp('by SPQR_SOLVE or by SPQR_BASIC. SPQR_SOLVE is part of')
        disp('SuiteSparseQR and can be used to construct basic solutions to')
        disp('min ||b - A x||. x_PINV is computed using MATLAB''s PINV. In the')
        disp('left hand plot the vectors b in min || b - A x || are random')
        disp('vectors. The right plot pictures  ||r|| = || b - A x || for x')
        disp('vectors calculated using MATLAB''s dense matrix QR algorithm,')
        disp('by SPQR_SOLVE or by SPQR_BASIC.  In the right hand plot the')
        disp('vectors b in min || b - A x || are of the form b = Ax where x')
        disp('is a random vector.')
        disp(' ')
        disp('In the left hand plot note that for most, but not all, of the')
        disp('matrices the norm of the basic solution calculated by SPQR_BASIC')
        disp('or by SPQR_SOLVE is the same order of magnitude as the norm of')
        disp('the pseudoinverse solution. Also note that SPQR_SOLVE calculates')
        disp('a large norm solution more frequently than does SPQR_BASIC.')
        disp(' ')
        disp('In the right hand plot note that for most, but not all, matrices')
        disp('the residuals for solutions calculated by SPQR_BASIC or by ')
        disp('SPQR_SOLVE are similar in size to the residual for solutions')
        disp('calcluated by MATLAB''s dense QR factorization. ')
        disp(' ')
        disp('The plot is best seen as a full screen plot.')
        disp(' ')
        % if (demo_opts.dopause)
        %     disp('Press enter to view the fourth figure.')
        %     pause
        % end
    end
    %---------------------------------------------------------------------------
    % plot information for pseudoinverse solutions
    %---------------------------------------------------------------------------
    figure(4)
    plot_pinv(norm_x_spqr_pinv_minus_x_pinv_v, ...
        norm_x_spqr_cod_minus_x_pinv_v, cond1_pinv_v, cond1_cod_v, ...
        norm_w_pinv_v, norm_w_cod_v, flag_spqr_pinv_v,  ... % tol_v, ...
        flag_spqr_cod_v, norm_A_v)
    if (demo_opts.doprint > 0)
        disp(' ')
        disp('In the fourth figure the left graph  plots || x - x_PINV ||')
        disp(' / ||x_PINV|| for x produced by SPQR_PINV for the matrices')
        disp('where SPQR_PINV returns a flag of 0. x_PINV is')
        disp('calculated using MATLAB''s PINV routine. Also part of a')
        disp('perturbation theory result from "Matrix Perturbation Theory" by')
        disp('Stewart and Sun, page 157, is plotted. The right hand graph')
        disp('is the same plot for x produced by SPQR_COD for the matrices')
        disp('where SPQR_COD returns a flag of 0. For the plots the ')
        disp('vectors b in min||b-Ax|| are random vectors')
        disp(' ')
        disp('Note that the accuracies of the pseudoinverse solutions')
        disp('calculated by SPQR_COD and, in most cases, by SPQR_PINV are as')
        disp('good as or nearly as good as predicted by the perturbation')
        disp('theory.')
        disp(' ')
        disp('The plot is best seen as a full screen plot.')
    end
    drawnow
end
if (demo_opts.doprint >= 0)
    fprintf ('\n') ;
end
failures = 0 ;
%-------------------------------------------------------------------------------
% check that numerical rank calculations are accurate
%-------------------------------------------------------------------------------
ifail_spqr_basic = find( rank_svd_basic_v ~= rank_spqr_basic_v & ...
    (flag_spqr_basic_v == 0 | flag_spqr_basic_v == 1) );
ifail_spqr_null = find( rank_svd_null_v ~= rank_spqr_null_v & ...
    (flag_spqr_null_v == 0 | flag_spqr_null_v == 1) );
ifail_spqr_pinv = find( rank_svd_pinv_v ~= rank_spqr_pinv_v & ...
    (flag_spqr_pinv_v == 0 | flag_spqr_pinv_v == 1) );
ifail_spqr_cod = find( rank_svd_cod_v ~= rank_spqr_cod_v & ...
    (flag_spqr_cod_v == 0 | flag_spqr_cod_v == 1) );
nfail_spqr_basic = length(ifail_spqr_basic);
nfail_spqr_null = length(ifail_spqr_null);
nfail_spqr_pinv = length(ifail_spqr_pinv);
nfail_spqr_cod = length(ifail_spqr_cod);
SJid_fail_spqr_basic = sort( indexs( ifail_spqr_basic ) );
SJid_fail_spqr_null = sort( indexs( ifail_spqr_null ) );
SJid_fail_spqr_pinv = sort( indexs( ifail_spqr_pinv ) );
SJid_fail_spqr_cod = sort( indexs( ifail_spqr_cod ) );
SJid_fail = union(SJid_fail_spqr_basic, SJid_fail_spqr_null) ; 
SJid_fail = union(SJid_fail, SJid_fail_spqr_pinv) ;
SJid_fail = union(SJid_fail, SJid_fail_spqr_cod) ;
if (demo_opts.doprint > 0)
    disp(' ')
    disp('Check that the routines reliably calculate the numerical rank.')
end
if (demo_opts.doprint >= 0)
    fprintf ('SPQR_BASIC: ') ;
end
iflagis0_or_1 = find(flag_spqr_basic_v == 0 | flag_spqr_basic_v == 1);
nflagis0_or_1 = length(iflagis0_or_1);
failures = failures + nfail_spqr_basic ;
if (demo_opts.doprint > 0)
    disp(['   ',int2str(nflagis0_or_1 - nfail_spqr_basic),...
        ' matrices have the correct numerical rank from the set of'])
    if ( nfail_spqr_basic == 0 )
        disp(['   ',int2str(nflagis0_or_1),...
            ' matrices with a warning flag of 0 or 1.'])
    elseif ( nfail_spqr_basic == 1 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrix from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_basic),'.'])
    elseif ( nfail_spqr_basic >= 2 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrices from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_basic),'.'])
    end
elseif (demo_opts.doprint >= 0)
    if ( nfail_spqr_basic == 0 )
        fprintf ('%3d matrices, failed: %d\n', nflagis0_or_1, ...
            nfail_spqr_basic) ;
    else
        fprintf ('%3d matrices, failed: %d with SJid =', ...
           nflagis0_or_1, nfail_spqr_basic) ;
       fprintf(' %d', SJid_fail_spqr_basic ) ;
       fprintf('\n') ;
    end
end
if (demo_opts.doprint >= 0)
    fprintf ('SPQR_NULL:  ') ;
end
iflagis0_or_1 = find(flag_spqr_null_v == 0 | flag_spqr_null_v == 1);
nflagis0_or_1 = length(iflagis0_or_1);
failures = failures + nfail_spqr_null ;
if (demo_opts.doprint > 0)
    disp(['   ',int2str(nflagis0_or_1 - nfail_spqr_null),...
        ' matrices have the correct numerical rank from the set of'])
    if ( nfail_spqr_null == 0 )
        disp(['   ',int2str(nflagis0_or_1),...
            ' matrices with a warning flag of 0 or 1.'])
    elseif ( nfail_spqr_null == 1 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrix from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_null),'.'])
    elseif ( nfail_spqr_null >= 2 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrices from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_null),'.'])
    end
elseif (demo_opts.doprint >= 0)
    if ( nfail_spqr_null == 0 )
        fprintf ('%3d matrices, failed: %d\n', nflagis0_or_1, ...
            nfail_spqr_null) ;
    else
        fprintf ('%3d matrices, failed: %d with SJid =', ...
           nflagis0_or_1, nfail_spqr_null) ;
       fprintf(' %d', SJid_fail_spqr_null ) ;
       fprintf('\n') ;
    end
end
if (demo_opts.doprint >= 0)
    fprintf ('SPQR_PINV:  ') ;
end
iflagis0_or_1 = find(flag_spqr_pinv_v == 0 | flag_spqr_pinv_v == 1);
nflagis0_or_1 = length(iflagis0_or_1);
failures = failures + nfail_spqr_pinv ;
if (demo_opts.doprint > 0)
    disp(['   ',int2str(nflagis0_or_1 - nfail_spqr_pinv),...
        ' matrices have the correct numerical rank from the set of'])
    if ( nfail_spqr_pinv == 0 )
        disp(['   ',int2str(nflagis0_or_1),...
            ' matrices with a warning flag of 0 or 1.'])
    elseif ( nfail_spqr_pinv == 1 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrix from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_pinv),'.'])
    elseif ( nfail_spqr_pinv >= 2 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrices from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_pinv),'.'])
    end
elseif (demo_opts.doprint >= 0)
    if ( nfail_spqr_pinv == 0 )
        fprintf ('%3d matrices, failed: %d\n', nflagis0_or_1, ...
            nfail_spqr_pinv) ;
    else
        fprintf ('%3d matrices, failed: %d with SJid =', ...
           nflagis0_or_1, nfail_spqr_pinv) ;
       fprintf(' %d', SJid_fail_spqr_pinv ) ;
       fprintf('\n') ;
    end
end
if (demo_opts.doprint >= 0)
    fprintf ('SPQR_COD:   ') ;
end
iflagis0_or_1 = find(flag_spqr_cod_v == 0 | flag_spqr_cod_v == 1);
nflagis0_or_1 = length(iflagis0_or_1);
failures = failures + nfail_spqr_cod ;
if (demo_opts.doprint > 0)
    disp(['   ',int2str(nflagis0_or_1 - nfail_spqr_cod),...
        ' matrices have the correct numerical rank from the set of'])
    if ( nfail_spqr_cod == 0 )
        disp(['   ',int2str(nflagis0_or_1),...
            ' matrices with a warning flag of 0 or 1.'])
    elseif ( nfail_spqr_cod == 1 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrix from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_cod),'.'])
    elseif ( nfail_spqr_cod >= 2 )
        disp(['   ',int2str(nflagis0_or_1),' matrices with a warning ',...
            'flag of 0 or 1.  Failure is for matrices from'])
        disp(['   ','the SJSU Singular Matrix Database with SJid = ',...
            int2str(SJid_fail_spqr_cod),'.'])
    end
elseif (demo_opts.doprint >= 0)
    if ( nfail_spqr_cod == 0 )
        fprintf ('%3d matrices, failed: %d\n', nflagis0_or_1, ...
            nfail_spqr_cod) ;
    else
        fprintf ('%3d matrices, failed: %d with SJid =', ...
           nflagis0_or_1, nfail_spqr_cod) ;
       fprintf(' %d', SJid_fail_spqr_cod ) ;
       fprintf('\n') ;
    end
end
%-------------------------------------------------------------------------------
% return results
%-------------------------------------------------------------------------------
if (nargout > 0)
    nfailures = failures ;
end
if nargout > 1
    SJid_failures = SJid_fail;
end
if (failures > 0)
    fprintf ('demo_spqr_rank: %d failures\n', failures) ;
end
%-------------------------------------------------------------------------------
% subfunctions
%-------------------------------------------------------------------------------
%****************************************************************
%****    plot_ranks
%****************************************************************
function plot_ranks(rank_svd_v,rank_spqr_cod_v,rank_spqr_v, ...
    flag_spqr_cod_v, gap_v, method)
% plot the percent of matrices with a gap larger than a specified gap
%     that have the correct numerical rank, that have a
%     warning flag = 0 or 1' and that have a correct rank for spqr
%     versus gap in singular values
% the input is computed by demo_reliable_spqr
% ncor = sum (rank_svd_v == rank_spqr_cod_v);
gap_tol = 10 .^ ((0:32)/2);
z = zeros (1, length (gap_tol)) ;
per_cor = z ;
per_cor_spqr = z ;
per_flag_0_1 = z ;
i = 0;
for gap = gap_tol
    i = i+1;
    igt = find( gap_v >= gap & rank_svd_v > 0 );
    % for igt use rank_svd_v > 0 to exclude rare cases where SJrank returns -1
    ncorrect = sum( rank_svd_v(igt) == rank_spqr_cod_v(igt) );
    per_cor(i) = 100*ncorrect / length(igt);
    ncorrect = sum( rank_svd_v(igt) == rank_spqr_v(igt) );
    per_cor_spqr(i) = 100*ncorrect / length(igt);
    n_flag_0_1 = sum( flag_spqr_cod_v(igt) <= 1 );
    per_flag_0_1(i) = 100 * n_flag_0_1 / length(igt);
end
semilogx(gap_tol,per_cor_spqr,'ks--',gap_tol,per_flag_0_1, ...
    'bo--',gap_tol,per_cor,'rx--');
axisv=axis;
axisv3 = axisv(3);
%axisv3=60;
axisv2=[axisv(1) gap_tol(end) axisv3 axisv(4)+.01];
axis(axisv2);
fs = 12;
ylabel('Percent','fontsize',fs)
xlabel('Gap in the singular value spectrum bigger than','fontsize',fs)
title(['Percent numerical rank correct and warning flag = 0 or 1',char(10),...
    'versus gap in singular values'],'fontsize',fs)
legend('% SPQR rank correct',['% flag = 0 or 1 in ',method],...
    ['% ',method,' rank correct'],'location','se')
grid
set(gca,'fontsize',fs)
%****************************************************************
%****    plot_ basic
%****************************************************************
function plot_basic(norm_x_pinv_v,norm_x_QR_dense_v, norm_r_QR_dense_v, ...
    norm_x_spqr_basic_v, norm_r_spqr_basic_v, ...
    norm_x_spqr_solve_v, norm_r_spqr_solve_v,flag_v)
% plot the quality of the basic solutions
% the input is computed by demo_spqr_rank
iflagis0 = find( flag_v == 0 );
nflagis0 = length(iflagis0);
norm_x_pinv0 = norm_x_pinv_v(iflagis0);
norm_x_spqr_basic0 = norm_x_spqr_basic_v(iflagis0);
norm_x_QR_dense0 = norm_x_QR_dense_v(iflagis0);
norm_x_spqr_solve0 = norm_x_spqr_solve_v(iflagis0);
norm_ratio_spqr_basic = norm_x_spqr_basic0 ./ norm_x_pinv0;
norm_ratio_QR_dense = norm_x_QR_dense0 ./ norm_x_pinv0;
norm_ratio_spqr_solve = norm_x_spqr_solve0 ./ norm_x_pinv0;
[norm_ratio_spqr_basic,isort]=sort(norm_ratio_spqr_basic);
norm_ratio_QR_dense = norm_ratio_QR_dense(isort);
norm_ratio_spqr_solve = norm_ratio_spqr_solve(isort);
subplot(1,2,1)
semilogy(1:nflagis0,norm_ratio_QR_dense, 'bo',...
    1:nflagis0,norm_ratio_spqr_solve, 'ks',...
    1:nflagis0,norm_ratio_spqr_basic, 'rx')
fs = 12;
ylabel(' || x || / ||x_{  PINV} ||','fontsize',fs)
xlabel('matrix: ordered by ||x_{SPQR\_BASIC} || / ||x_{PINV} ||','fontsize',fs)
title([' Comparison of the norms of basic ',...
    'solutions divided by ||x_{PINV}||',char(10),'for ', ...
    int2str(nflagis0) , ' matrices with flag = 0', ...
    ' in SPQR\_BASIC'],'fontsize',fs)
legend('dense QR','SPQR\_SOLVE',...
    ' SPQR\_BASIC ','location','best')
grid
set(gca,'fontsize',fs)
subplot(1,2,2)
norm_r_spqr_basic0 = norm_r_spqr_basic_v(iflagis0);
norm_r_QR_dense0 = norm_r_QR_dense_v(iflagis0);
norm_r_spqr_solve0 = norm_r_spqr_solve_v(iflagis0);
[norm_r_spqr_basic,isort]=sort(norm_r_spqr_basic0);
norm_r_QR_dense = norm_r_QR_dense0(isort);
norm_r_spqr_solve = norm_r_spqr_solve0(isort);
semilogy(1:nflagis0,norm_r_QR_dense,'bo',...
    1:nflagis0,norm_r_spqr_solve,'ks',...
    1:nflagis0,norm_r_spqr_basic,'rx')
fs = 12;
ylabel(' || r || / || b ||','fontsize',fs)
xlabel('matrix: ordered by ||r_{SPQR\_BASIC} || / ||b||','fontsize',fs)
title([' Comparison of the norms of residuals, ',...
    'r = b-A*x, divided by ||b||',char(10),' for ', ...
    int2str(length(iflagis0)) , ' matrices with flag = 0', ...
    ' in SPQR\_BASIC'],'fontsize',fs)
legend('dense QR','SPQR\_SOLVE',...
    ' SPQR\_BASIC ','location','best')
set(gca,'fontsize',fs)
grid
%****************************************************************
%****    plot_null_spaces
%****************************************************************
function plot_null_spaces(norm_A_N_svd_v,tol_v, ...
    norm_A_N_v,flag_v,method)
% plot the quality of the null spaces
% the input is computed by demo_spqr_rank
iflagis0 = find( flag_v == 0 );
nflagis0 = length(iflagis0);
n_method_better = sum( norm_A_N_v(iflagis0) <= norm_A_N_svd_v(iflagis0) );
percent_method_better = 100*n_method_better / length(iflagis0);
quality_method = norm_A_N_v(iflagis0) ./ tol_v(iflagis0);
quality_svd = norm_A_N_svd_v(iflagis0) ./ tol_v(iflagis0);
[ignore, isort]=sort(quality_method);                                       %#ok
clear ignore
fs = 12;
semilogy(1:nflagis0,quality_svd(isort),'bo',1:nflagis0, ...
    quality_method(isort),'rx');
%axis1 = axis;
%axis1(3)=1.e-8;
%axis(axis1)
if strcmp(method,'SPQR\_BASIC')
    ylabel('|| A^T N || / tolerance','fontsize',fs)
    xlabel(['matrix: ordered by ||A^TN|| / tolerance for ',method],...
        'fontsize',fs)
    title(['Null space quality when flag in ',method,' is 0.',char(10),...
        method,' has ||A^T N|| smaller in ',...
        int2str(percent_method_better),'% of cases.'],'fontsize',fs)
else
    ylabel('|| A N || / tolerance','fontsize',fs)
    xlabel(['matrix: ordered by ||AN|| / tolerance for ',method],...
        'fontsize',fs)
    title(['Null space quality when flag in ',method,' is 0.',char(10),...
        method,' has ||AN|| smaller in ',...
        int2str(percent_method_better),'% of cases.'],'fontsize',fs)
end
legend('SVD null space',[method,' null space'],'location','SE')
grid
set(gca,'fontsize',fs)
%****************************************************************
%****    plot_pinv
%****************************************************************
function  plot_pinv(norm_x_spqr_pinv_minus_x_pinv_v, ...
        norm_x_spqr_cod_minus_x_pinv_v, cond1_pinv_v, cond1_cod_v, ...
        norm_w_pinv_v, norm_w_cod_v, flag_spqr_pinv_v,  ... % tol_v, ...
        flag_spqr_cod_v, norm_A_v)
% plot the quality of the pseudoinverse solutions
% the input is computed by demo_spqr_rank
% draw plot for results from spqr_pinv
subplot(1,2,1)
iflagis0 = find(flag_spqr_pinv_v == 0);
nflagis0 = length(iflagis0);
%perturbation_theory_v = cond1_v .* (max(tol_v,norm_w_pinv_v) ./ norm_A_v );
perturbation_theory_v = cond1_pinv_v .* max(10*eps,norm_w_pinv_v ./ norm_A_v );
perturbation_theory0 = perturbation_theory_v(iflagis0);
[perturbation_theory,isort] = sort(perturbation_theory0);
norm_x_spqr_pinv_minus_x_pinv0 = norm_x_spqr_pinv_minus_x_pinv_v(iflagis0);
norm_x_spqr_pinv_minus_x_pinv = norm_x_spqr_pinv_minus_x_pinv0(isort);
fs = 12;
loglog(perturbation_theory, norm_x_spqr_pinv_minus_x_pinv,'o',...
    [perturbation_theory(1),max(1,perturbation_theory(end))], ...
    [perturbation_theory(1),max(1,perturbation_theory(end))],...
    'r--','linewidth',2 )
ylabel(' || x_{SPQR\_PINV } - x_{PINV} || / ||x_{PINV} ||','fontsize',fs)
xlabel(' ( \sigma_1(A) / \sigma_r(A) ) max(10 \epsilon, ||w|| / ||A|| ) ',...
    'fontsize',fs)
title([' Comparison of the pseudoinverse solutions ',...
    'returned by SPQR\_PINV ',char(10),' and MATLAB''s PINV for ', ...
    int2str(nflagis0) , ' matrices with flag = 0', ...
    ' in SPQR\_PINV'],'fontsize',fs)
legend('|| x_{SPQR\_PINV } - x_{PINV} || / ||x_{PINV} ||',...
    '( \sigma_1(A)/\sigma_r(A) )  max(10\epsilon, ||w|| / ||A|| ) ',...
    'location','best')
set(gca,'fontsize',fs)
grid
shg
% draw plot for results from spqr_cod
subplot(1,2,2)
iflagis0 = find(flag_spqr_cod_v == 0);
nflagis0 = length(iflagis0);
%perturbation_theory_v = cond1_v .* (max(tol_v,norm_w_cod_v) ./ norm_A_v);
perturbation_theory_v = cond1_cod_v .* max(10*eps,norm_w_cod_v ./ norm_A_v );
perturbation_theory0 = perturbation_theory_v(iflagis0);
[perturbation_theory,isort] = sort(perturbation_theory0);
norm_x_spqr_cod_minus_x_pinv0 = norm_x_spqr_cod_minus_x_pinv_v(iflagis0);
norm_x_spqr_cod_minus_x_pinv = norm_x_spqr_cod_minus_x_pinv0(isort);
fs = 12;
loglog(perturbation_theory, norm_x_spqr_cod_minus_x_pinv,'o',...
    [perturbation_theory(1),max(1,perturbation_theory(end))], ...
    [perturbation_theory(1),max(1,perturbation_theory(end))],...
    'r--','linewidth',2 )
ylabel('|| x_{SPQR\_COD } - x_{PINV} || / ||x_{PINV} ||','fontsize',fs)
xlabel('( \sigma_1(A)/\sigma_r(A) ) max(10\epsilon, ||w|| / ||A||) ',...
    'fontsize',fs)
title([' Comparison of the pseudoinverse solutions ',...
    'returned by SPQR\_COD ',char(10),' and MATLAB''s PINV for ', ...
    int2str(nflagis0) , ' matrices with flag = 0', ...
    ' in SPQR\_COD'],'fontsize',fs)
legend('|| x_{SPQR\_COD } - x_{PINV} || / ||x_{PINV} ||',...
    '( \sigma_1(A) / \sigma_r(A) )  max(10 \epsilon, ||w|| / ||A||) ',...
    'location','best')
set(gca,'fontsize',fs)
grid
shg
 
     |