1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
function spqr_rank_stats (stats, print_opts)
%SPQR_RANK_STATS prints the statistics from spqr_rank functions
%
% For a detailed description of the meaning of the basic statistic for
% spqr_basic, spqr_null, spqr_pinv or spqr_cod, just type
% 'spqr_rank_stats' with no inputs. Type spqr_rank_stats('ssi') or
% spqr_rank_stats('ssp') for a description of the basic statistics for
% sqpr_ssi or spqr_ssp, respectively. spqr_rank_stats(1) also prints a
% detailed description of all statistics calculated by any spqr_function
% when opts.get_details is 1. To print a summary of the stats struct
% returned by a spqr_rank function, use spqr_rank_stats(stats) or
% spqr_rank_stats(stats,1).
%
% Examples
%
% spqr_rank_stats ; % prints a description of basic statistics
% % from spqr_basic, spqr_null, spqr_pinv, spqr_cod
% spqr_rank_stats('ssi') ; % description of basic statistics from spqr_ssi
% spqr_rank_stats('ssp') ; % description of basic statistics from spqr_ssp
% spqr_rank_stats ( 1 ) ; % prints a verbose description of all statistics
% spqr_rank_stats (stats) ; % prints a short summary of the stats struct
% spqr_rank_stats (stats,1); % prints options used, when opts.get_details is 1
%
% See also spqr_basic, spqr_cod, spqr_pinv, spqr_ssi, spqr_ssp
% spqr_rank, Copyright (c) 2012, Leslie Foster and Timothy A Davis.
% All Rights Reserved.
% SPDX-License-Identifier: BSD-3-clause
if (nargin == 0)
stats = 0 ;
get_details = 0 ;
method = 1 ; % spqr_basic, spqr_null, spqr_cod, spqr_pinv
end
if ( nargin == 1 )
if ischar(stats)
get_details = 0 ;
if ( strcmp(stats,'spqr_ssi') || strcmp(stats,'ssi') )
method = 2 ; % spqr_ssp
elseif ( strcmp(stats,'spqr_ssp') || strcmp(stats,'ssp') )
method = 3 ; % spqr_ssi
else
method = 1; % spqr_basic, spqr_null, spqr_cod, spqr_pinv
end
elseif isreal(stats)
get_details = stats;
method = 4; % any method
end
print_opts = 0 ;
end
if (isstruct (stats))
%---------------------------------------------------------------------------
% print the stats returned by the spqr_* function
%---------------------------------------------------------------------------
%---------------------------------------------------------------------------
% flag
%---------------------------------------------------------------------------
flag = -1 ;
if (isfield (stats, 'flag'))
flag = stats.flag ;
end
if ~isfield( stats, 'est_svals')
% description of flag for calls except for call to spqr_ssp
if (flag == 0)
fprintf ('\n flag : %g : ', flag) ;
fprintf ('ok. stats.rank very likely to be correct.\n') ;
elseif (flag <= 2)
fprintf ('\n flag : %g : ', flag) ;
fprintf ('stats.rank may be correct for tolerance stats.tol,\n') ;
fprintf (' but error bounds are too high to confirm this.\n') ;
if (flag == 1)
fprintf ([' However, stats.rank appears to be correct' ...
' for tolerance stats.tol_alt.\n']) ;
end
elseif (flag == 3)
fprintf ('\n flag : %g : ', flag) ;
fprintf ('poor results. stats.rank is likely too high.\n') ;
elseif (flag == 4)
fprintf ('\n flag : %g : ', flag) ;
fprintf ('failure. Overflow during inverse power method.\n') ;
% elseif (flag == 5)
% % this code is disabled because stats.flag=5 is removed.
% fprintf ('\n flag : %g : ', flag) ;
% fprintf ('failure. Inconsistent rank estimates.\n') ;
else
error ('spqr_rank:invalid', 'invalid stats') ;
end
else
% description of flag for calls to spqr_ssp
fprintf ('\n flag : %g : ', flag) ;
if (flag == 0)
fprintf (['ok. spqr_ssp converged with est. relative error ' ...
'<= opts_ssp.convergence_factor.\n']) ;
else
fprintf (['spqr_ssp did not converge with est. relative error ' ...
'<= opts_ssp.convergence_factor.\n']) ;
end
end
%---------------------------------------------------------------------------
% rank
%---------------------------------------------------------------------------
if (isfield (stats, 'rank'))
fprintf (' rank : %g : estimate of numerical rank.\n', stats.rank) ;
end
%---------------------------------------------------------------------------
% rank_spqr
%---------------------------------------------------------------------------
if (isfield (stats, 'rank_spqr'))
fprintf (' rank_spqr : %g : ', stats.rank_spqr) ;
fprintf ('estimate of numerical rank from spqr.\n') ;
fprintf (' This is normally an upper bound on the true rank.\n') ;
end
%---------------------------------------------------------------------------
% tol
%---------------------------------------------------------------------------
if (isfield (stats, 'tol'))
fprintf (' tol : %g : numerical tolerance used.\n', stats.tol) ;
end
%---------------------------------------------------------------------------
% tol_alt
%---------------------------------------------------------------------------
if (isfield (stats, 'tol_alt'))
fprintf (' tol_alt : %g : alternate numerical tolerance used.\n', ...
stats.tol_alt) ;
end
%---------------------------------------------------------------------------
% normest_A
%---------------------------------------------------------------------------
if (isfield (stats, 'normest_A'))
fprintf (' normest_A : %g : estimate of Euclidean norm of A.\n', ...
stats.normest_A) ;
end
%---------------------------------------------------------------------------
% normest_R
%---------------------------------------------------------------------------
if (isfield (stats, 'normest_R'))
fprintf ([' normest_R : %g : estimate of Euclidean norm of R ' ...
'(calculated for spqr_ssi).\n'], ...
stats.normest_R) ;
end
%---------------------------------------------------------------------------
% est_svals_upper_bounds
%---------------------------------------------------------------------------
if (isfield (stats, 'est_sval_upper_bounds'))
fprintf (' est_sval_upper_bounds : ') ;
print_vector (stats.est_sval_upper_bounds) ;
fprintf (' : estimated upper bounds on singular value(s).\n') ;
end
%---------------------------------------------------------------------------
% est_svals_lower_bounds
%---------------------------------------------------------------------------
if (isfield (stats, 'est_sval_lower_bounds'))
fprintf (' est_sval_lower_bounds : ') ;
print_vector (stats.est_sval_lower_bounds) ;
fprintf (' : estimated lower bounds on singular value(s).\n') ;
end
%---------------------------------------------------------------------------
% est_svals_of_R
%---------------------------------------------------------------------------
if (isfield (stats, 'est_svals_of_R'))
fprintf (' est_svals_of_R : ') ;
print_vector (stats.est_svals_of_R) ;
fprintf ([' : estimated singular value(s) of triangular ' ...
'matrix R.\n']) ;
end
%---------------------------------------------------------------------------
% est_svals
%---------------------------------------------------------------------------
if (isfield (stats, 'est_svals'))
fprintf (' est_svals : ') ;
print_vector (stats.est_svals) ;
fprintf ([' : estimated singular value(s) of A*N or A''*NT, ' ...
'from spqr_ssp.\n']) ;
end
%---------------------------------------------------------------------------
% est_error_bounds
%---------------------------------------------------------------------------
if (isfield (stats, 'est_error_bounds'))
fprintf (' est_error_bounds : ') ;
print_vector (stats.est_error_bounds) ;
fprintf (' : error bounds for each singular value.\n') ;
end
%---------------------------------------------------------------------------
% sval_numbers_for_bounds
%---------------------------------------------------------------------------
if (isfield (stats, 'sval_numbers_for_bounds'))
fprintf (' sval_numbers_for_bounds : ') ;
print_vector (stats.sval_numbers_for_bounds) ;
fprintf (' : index of singular value(s), for bounds.\n') ;
end
%---------------------------------------------------------------------------
% est_norm_A_times_N
%---------------------------------------------------------------------------
if (isfield (stats, 'est_norm_A_times_N'))
fprintf ([' est_norm_A_times_N : %g : estimated' ...
' norm(A*N).\n'], stats.est_norm_A_times_N) ;
end
%---------------------------------------------------------------------------
% est_err_bound_norm_A_times_N
%---------------------------------------------------------------------------
if (isfield (stats, 'est_err_bound_norm_A_times_N'))
fprintf ([' est_err_bound_norm_A_times_N : %g : estimated error ' ...
'bound for norm(A*N).\n'], stats.est_err_bound_norm_A_times_N) ;
end
%---------------------------------------------------------------------------
% est_norm_A_transpose_times_NT
%---------------------------------------------------------------------------
if (isfield (stats, 'est_norm_A_transpose_times_NT'))
fprintf ([' est_norm_A_transpose_times_NT : %g : estimated' ...
' norm(A''*NT).\n'], stats.est_norm_A_transpose_times_NT) ;
end
%---------------------------------------------------------------------------
% est_err_bound_norm_A_transpose_times_NT
%---------------------------------------------------------------------------
if (isfield (stats, 'est_err_bound_norm_A_transpose_times_NT'))
fprintf ([' est_err_bound_norm_A_transpose_times_NT : %g : ' ...
' estimated error bound for norm(A''*NT).\n'], ...
stats.est_err_bound_norm_A_transpose_times_NT) ;
end
%---------------------------------------------------------------------------
% norm_R_times_N
%---------------------------------------------------------------------------
if (isfield (stats, 'norm_R_times_N'))
fprintf ([' norm_R_times_N : %g : norm of (R*N), from ' ...
'spqr_ssi.\n'], stats.norm_R_times_N) ;
end
%---------------------------------------------------------------------------
% norm_R_transpose_times_NT
%---------------------------------------------------------------------------
if (isfield (stats, 'norm_R_transpose_times_NT'))
fprintf ([' norm_R_transpose_times_NT : %g : norm of (R''*NT), '...
'from spqr_ssi.\n'], stats.norm_R_transpose_times_NT) ;
end
%---------------------------------------------------------------------------
% iters
%---------------------------------------------------------------------------
if (isfield (stats, 'iters'))
fprintf (' iters : %g : iterations in spqr_ssi or spqr_ssp.\n', ...
stats.iters) ;
end
%---------------------------------------------------------------------------
% nsvals_large_found
%---------------------------------------------------------------------------
if (isfield (stats, 'nsvals_large_found'))
fprintf ([' nsvals_large_found : %d : number of large singular ' ...
'values found.\n'], stats.nsvals_large_found) ;
end
%---------------------------------------------------------------------------
% final_blocksize
%---------------------------------------------------------------------------
if (isfield (stats, 'final_blocksize'))
fprintf (' final_blocksize : %d : final block size in spqr_ssi.\n', ...
stats.final_blocksize) ;
end
%---------------------------------------------------------------------------
% ssi_max_block_used
%---------------------------------------------------------------------------
if (isfield (stats, 'ssi_max_block_used'))
fprintf ([' ssi_max_block_used : %d : max block size for ' ...
'spqr_ssi.\n'], stats.ssi_max_block_used) ;
end
%---------------------------------------------------------------------------
% ssi_min_block_used
%---------------------------------------------------------------------------
if (isfield (stats, 'ssi_min_block_used'))
fprintf ([' ssi_min_block_used : %d : initial block size for ' ...
'spqr_ssi.\n'], stats.ssi_min_block_used) ;
end
%---------------------------------------------------------------------------
% time
%---------------------------------------------------------------------------
if (isfield (stats, 'time'))
fprintf ([' time : %g : total time taken ' ...
'(includes all timings below).\n'], stats.time) ;
end
%---------------------------------------------------------------------------
% time_initialize
%---------------------------------------------------------------------------
if (isfield (stats, 'time_initialize'))
fprintf (' time_initialize : %g : time to initialize',...
stats.time_initialize) ;
if isfield (stats, 'normest_A') || isfield (stats, 'normest_R')
fprintf (' including estimating the norm of A or R.\n')
else
fprintf('.\n')
end
end
%---------------------------------------------------------------------------
% time_svd
%---------------------------------------------------------------------------
if (isfield (stats, 'time_svd'))
fprintf (' time_svd : %g : total time taken by svd.\n', ...
stats.time_svd) ;
end
%---------------------------------------------------------------------------
% time_basis
%---------------------------------------------------------------------------
if (isfield (stats, 'time_basis'))
fprintf (' time_basis : %g : time to compute basis.\n', ...
stats.time_basis) ;
end
%---------------------------------------------------------------------------
% time_iters
%---------------------------------------------------------------------------
if (isfield (stats, 'time_iters'))
fprintf (' time_iters : %g : time for spqr_ssi iterations.\n', ...
stats.time_iters) ;
end
%---------------------------------------------------------------------------
% time_est_error_bounds
%---------------------------------------------------------------------------
if (isfield (stats, 'time_est_error_bounds'))
fprintf ([' time_est_error_bounds : %g : time taken to estimate '...
'error bounds in spqr_ssi.\n'], stats.time_est_error_bounds) ;
end
%---------------------------------------------------------------------------
% opts_used
%---------------------------------------------------------------------------
if (print_opts && isfield (stats, 'opts_used'))
fprintf ('\nopts_used : ') ;
spqr_rank_opts (stats.opts_used) ;
end
%---------------------------------------------------------------------------
% info_spqr1
%---------------------------------------------------------------------------
if (isfield (stats, 'info_spqr1'))
fprintf ('\ninfo_spqr1 : statistics from first QR factorization.\n\n') ;
disp (stats.info_spqr1) ;
end
%---------------------------------------------------------------------------
% info_spqr2
%---------------------------------------------------------------------------
if (isfield (stats, 'info_spqr2'))
fprintf ('\ninfo_spqr2 : statistics from second QR factorization.\n\n');
disp (stats.info_spqr2) ;
end
%---------------------------------------------------------------------------
% stats_ssi
%---------------------------------------------------------------------------
if (isfield (stats, 'stats_ssi'))
% all opts used by spqr_ssp are the same stats.opts_used
fprintf ('\nstats_ssi : statistics from spqr_ssi.\n') ;
spqr_rank_stats (stats.stats_ssi, 0) ;
end
%---------------------------------------------------------------------------
% stats_ssp_N
%---------------------------------------------------------------------------
if (isfield (stats, 'stats_ssp_N'))
fprintf ('\nstats_ssp_N : statistics from spqr_ssp (A,N).\n') ;
spqr_rank_stats (stats.stats_ssp_N, 0) ;
% all other opts used by spqr_ssp are the same stats.opts_used
if (isfield (stats.stats_ssp_N, 'opts_used') && ...
isfield (stats.stats_ssp_N.opts_used, 'k') && print_opts)
fprintf ([' stats_ssp_N.opts_used.k : %d : number of ' ...
'singular values to compute in spqr_ssp(A,N).\n'], ...
stats.stats_ssp_N.opts_used.k) ;
end
end
%---------------------------------------------------------------------------
% stats_ssp_NT
%---------------------------------------------------------------------------
if (isfield (stats, 'stats_ssp_NT'))
fprintf ('\nstats_ssp_NT : statistics from spqr_ssp (A'',NT).\n') ;
spqr_rank_stats (stats.stats_ssp_NT, 0) ;
% all other opts used by spqr_ssp are the same stats.opts_used
if (isfield (stats.stats_ssp_NT, 'opts_used') && ...
isfield (stats.stats_ssp_NT.opts_used, 'k') && print_opts)
fprintf ([' stats_ssp_NT.opts_used.k : %d : number of ' ...
'singular values to compute in spqr_ssp(A'',NT).\n'], ...
stats.stats_ssp_NT.opts_used.k) ;
end
end
%---------------------------------------------------------------------------
% stats_spqr_basic
%---------------------------------------------------------------------------
if (isfield (stats, 'stats_spqr_basic'))
% all opts used by spqr_basic are the same stats.opts_used
fprintf ('\nstats_spqr_basic : statistics from spqr_basic.\n') ;
spqr_rank_stats (stats.stats_spqr_basic, 0) ;
end
%---------------------------------------------------------------------------
% stats_spqr_null
%---------------------------------------------------------------------------
if (isfield (stats, 'stats_spqr_null'))
fprintf ('\nstats_spqr_null : statistics from spqr_null.\n') ;
% all other opts used by spqr_null are the same stats.opts_used
if (isfield (stats.stats_spqr_null, 'opts_used') && ...
isfield (stats.stats_spqr_null.opts_used, 'ssi_min_block'))
fprintf (['\n stats_spqr_null.opts_used.ssi_min_block : %d'...
' : initial block size in spqr_ssi as used by spqr_null.'], ...
stats.stats_spqr_null.opts_used.ssi_min_block) ;
end
spqr_rank_stats (stats.stats_spqr_null, 0) ;
end
else
%---------------------------------------------------------------------------
% describe each statistic
%---------------------------------------------------------------------------
fprintf ('\nDescription of stats returned by ') ;
if method == 1
fprintf ('spqr_basic, spqr_null, spqr_pinv \nor spqr_cod:\n') ;
elseif method == 2
fprintf ('spqr_ssi:\n') ;
elseif method == 3
fprintf ('spqr_ssp:\n') ;
elseif method == 4
fprintf ('all spqr_functions:\n') ;
end
if ( method == 1 || method == 2 || get_details >= 1 )
fprintf ([ ...
'\nstats.flag (for all routines except spqr_ssp) -- \n' ...
' if stats.flag is 0 if it is likely, although not\n' ...
' guaranteed, that stats.rank is the correct numerical rank for\n' ...
' tolerance stats.tol (i.e. agrees with the numerical rank\n' ...
' determined by the singular values of R).\n' ...
' \n'...
' stats.flag is 1 if the calculated numerical rank stats.rank ' ...
'may\n'...
' be correct for the tolerance stats.tol but the estimated error\n'...
' bounds are too large to confirm this. However stats.rank '...
'appears\n'...
' to be correct for an alternate tolerance stats.tol_alt. More\n'...
' generally stats.rank appears to be correct for any tolerance\n'...
' between stats.est_sval_lower_bounds(nsvals_large) and\n'...
' stats.est_sval_upper_bounds(nsvals_large+1).\n' ...
' \n'...
' stats.flag is 2 if the calculated numerical rank ' ...
'stats.numerical\n'...
' may be correct but estimated error bounds are too large to ' ...
'confirm\n'...
' this. The conditions for stats.flag to be 0 or 1 are not\n'...
' satisfied.\n' ...
' \n'...
' stats.flag is 3 if is likely that the numerical rank returned,\n'...
' stats.rank, is too large.\n'...
' \n'...
' stats.flag is 4 if overflow occurred during the inverse power\n'...
' method. The method fails in this case, and all parameters ' ...
'other\n'...
' stats are returned as empty ([ ]).\n' ...
' \n'...
' stats.flag is 5 if a catastrophic failure occurred.\n']) ;
end
if ( method == 3 || get_details >= 1 )
fprintf ([ ...
'\nstats.flag -- (for spqr_ssp) \n' ...
' stats.flag is 0 if spqr_ssp converged with estimated relative\n' ...
' error in singular value opts.k of A (or of A*N) <=\n' ...
' opts_ssp.convergence_factor. stats.flag is 1 if this is not ' ...
'true.\n'])
end
if ( method == 1 || method == 2 || get_details >= 1 )
fprintf ([ ...
'\nstats.rank -- the estimated numerical rank when stats.flag is\n' ...
' 0, 1 or 2. stats.rank is typically an upper bound on the\n'...
' numerical rank when stats.flag is 3. Note that stats.rank ' ...
'is a\n'...
' correction to the rank returned by spqr (stats.rank_spqr) ' ...
'in the\n'...
' case that the calculations in the routine inidicate that the ' ...
'rank\n'...
' returned by spqr not correct.\n']) ;
end
if ( method == 1 || method == 2 || get_details >= 1 )
fprintf ( ...
'\nstats.tol -- the tolerance used to define the numerical rank.\n') ;
end
if ( method == 1 || get_details >= 1 )
fprintf ([ ...
'\nstat.tol_alt -- an alternate tolerance that corresponds to the\n' ...
' calculated numerical rank when stats.flag is 1.\n']) ;
fprintf ([ ...
'\nstats.est_sval_upper_bounds -- stats.est_sval_upper_bounds(i) ' ...
'is an\n'...
' estimate of an upper bound on singular value number\n' ...
' stats.sval_numbers_for_bounds(i) of A.\n']) ;
fprintf ([ ...
'\nstats.est_sval_lower_bounds -- stats.est_sval_lower_bounds(i) ' ...
'is an\n'...
' estimate of an lower bound on singular value number\n' ...
' stats.sval_numbers_for_bounds(i) of A.\n']) ;
fprintf (['\n' ...
' Note that stats.est_sval_upper_bounds(i) is a rigorous upper '...
'bound\n'...
' on some singular value of (A+E) where where E is ' ...
'O(norm(A)*eps)\n'...
' Also stats.est_sval_lower_bounds(i) is a rigorous lower ' ...
'bound on\n'...
' some singular value of (A+E). In both cases the singular ' ...
'value is\n'...
' normally singular value number sval_numbers_for_bounds(i) ' ...
'of A,\n'...
' but the singular value number is not guaranteed. For i such ' ...
'that\n' ...
' sval_numbers_for_bounds(i) = stats.rank (that is for estimates\n'...
' of singular value stats.rank) if ' ...
'stats.est_sval_upper_bounds(i)\n' ...
' is a large multiple of stats.est_sval_lower_bounds(i) then\n' ...
' solution vectors x produced by spqr_basic may be ' ...
'inferior (i.e.\n'...
' be significanty larger) than solutions produced by ' ...
'spqr_pinv or\n' ...
' spqr_cod.\n']) ;
end
if ( method == 2 || get_details >= 1 )
fprintf ([ ...
'\nstats.est_svals_of_R -- computed by spqr_ssi.\n' ...
' stats.est_svals_of_R contains estimates of the smallest ' ...
'singular\n' ...
' of R.\n']) ;
end
if ( method == 3|| get_details >= 1 )
fprintf ([ ...
'\nstats.est_svals -- computed by spqr_ssp.\n' ...
' stats.est_svals(i) is an estimate of the ith largest ' ...
'singular of\n' ...
' A or of A*N. Also for i = 1:nsval, stats.est_svals(i) is a ' ...
'lower\n' ...
' bound on the ith largest singular value of A (or A*N).\n']) ;
end
if ( method == 2 || method == 3 || get_details >= 1 )
fprintf ([ ...
'\nstats.est_error_bounds -- computed by spqr_ssi and spqr_ssp.\n' ...
' stats.est_error_bounds(i) is an estimated bound on the ' ...
'absolute\n'...
' error in singular value number ' ...
'stats.sval_numbers_for_bounds(i).\n' ...
' of R (for spqr_ssi) or of A or A*N (for spqr_ssp). It is ' ...
'also a\n' ...
' rigorous bound on abs (s(i) - some true singular value of ' ...
'(B+E)),\n'...
' where E is O(norm(B)*eps) and B = R (for spqr_ssi) and B =\n' ...
' A or A*N (for spqr_ssp).\n']) ;
end
fprintf ([ ...
'\nstats.sval_numbers_for_bounds -- component i in the error bounds is ' ...
'an estimated\n'...
' error bound for singular value number sval_numbers_for_bounds(i).\n']) ;
if ( method == 1 || get_details >= 1 )
fprintf ([ ...
'\nstats.est_norm_A_transpose_times_NT -- an estimate of ' ...
'norm(A''*NT).\n']) ;
fprintf ( ...
'\nstats.est_norm_A_times_N -- an estimate of norm(A*N).\n') ;
end
if (get_details >= 1)
fprintf (['\n***** Additional statistics when opts.get_details ' ...
'is 2: *****\n']) ;
fprintf ([ ...
'\nstats.rank_spqr -- the rough estimate of the numerical rank\n'...
' computed by spqr. This is typically correct if the numerical\n'...
' rank is well-defined.\n']) ;
fprintf ('\nstats.stats_ssi -- statistics returned by spqr_ssi.\n') ;
fprintf ([ ...
'\nstats_ssi.ssi_max_block_used -- the maximum block size ' ...
'used by spqr_ssi.\n']) ;
fprintf ([ ...
'\nstats_ssi.ssi_min_block_used -- the initial block size ' ...
'used by spqr_ssi.\n']) ;
end
if (get_details == 1)
fprintf (['\n***** Additions statistics when opts.get_details is ' ...
'1: *****\n']) ;
fprintf ([ ...
'\nstats.normest_A -- an estimate of the Euclidean norm of A. '...
'Calculated using\n' ...
' normest(A,0.01).\n']) ;
fprintf ([ ...
'\nstats.normest_R -- an estimate of the Euclidean norm of R. '...
'Calculated for spqr_ssi\n' ...
' using normest(R,0.01).\n']) ;
fprintf ([ ...
'\nstats.est_err_bound_norm_A_times_N -- an estimate of an\n'...
' error bound on stats.est_norm_A_times_N. It is also a\n'...
' rigorous bound on abs (stats.est_norm_A_times_N - s)\n'...
' where s is some singular value of (A+E)*N and where E is\n' ...
' O(norm(A)*eps). Usually the singular value is the first '...
'singular\n'...
' value but this is not guaranteed.\n']) ;
fprintf ([ ...
'\nstats.est_err_bound_norm_A_transpose_times_NT -- an estimate '...
'of an\n'...
' error bound on stats.est_norm_A_transpose_times_NT. It is '...
'also a\n'...
' rigorous bound on abs (stats.est_norm_A_transpose_times_NT '...
'- s)\n'...
' where s is some singular value of (A+E)''*NT and where E is\n' ...
' O(norm(A)*eps). Usually the singular value is the first '...
'singular\n'...
' value but this is not guaranteed.\n']) ;
fprintf ([ ...
'\nstats_ssi.norm_R_times_N -- Euclidean norm of (R*N), from ' ...
'spqr_ssi.\n']) ;
fprintf ([ ...
'\nstats_ssi.norm_R_transpose_times_NT -- Eucliean norm of ' ...
'(R''*NT), from spqr_ssi.\n']) ;
fprintf ([ ...
'\nstats_ssi.iters or stats_ssp_N.iters or stats_ssp_NT.iters -- ' ...
'number of\n' ...
' iterations for subspace iteration in spqr_ssi or spqr_ssp.\n']) ;
fprintf ([ ...
'\nstats_ssi.nsvals_large_found -- the number of ''large'' (larger ' ...
'than tol) singular\n' ...
' values found, from spqr_ssi.\n']) ;
fprintf ([ ...
'\nstats_ssi.final_blocksize -- final block size for subspace ' ...
'iteration in \n spqr_ssi. \n']) ;
fprintf ([ ...
'\nstats.stats_spqr_basic -- statistics returned when spqr_basic ' ...
'is called by spqr_pinv.\n']) ;
fprintf ([ ...
'\nstats.stats_spqr_null -- statistics returned when spqr_null ' ...
'is called by spqr_pinv.\n']) ;
fprintf ([ ...
'\nstats.info_spqr1 -- statistics from spqr for the first QR ' ...
'factorization.\n' ...
' See ''help spqr'' for details.\n']) ;
fprintf ([ ...
'\nstats.info_spqr2 -- statistics from spqr for the second QR ' ...
'factorization, if\n' ...
' required. See ''help spqr'' for details.\n']) ;
fprintf ([ ...
'\nstats.stats_ssp_N -- statistics from spqr_ssp when calculating ' ...
'the basis\n' ...
' N for the null space of A.\n']) ;
fprintf ([ ...
'\nstats.stats_ssp_NT -- statistics from spqr_ssp when calculating ' ...
'the basis\n' ...
' NT for the null space of A transpose.\n']) ;
fprintf ([ ...
'\nstats.opts_used, stats_ssi.opts_used, or stats_ssp.opts_used -- ' ...
'values of\n' ...
' options used. These can be different from values in opts ' ...
'since, for example,\n' ...
' the size of A can restrict some values in opts.\n']) ;
fprintf ([ ...
'\nstats.time, stats_ssi.time, etc. -- the total time of the ' ...
'routine including\n' ...
' the times described below.\n']) ;
fprintf ([ ...
'\nstats.time_initialize, stats_ssi.time_initialize, etc. -- the '...
'time to\n' ...
' set default values of opts, including calculating ' ...
'normest(A,0.01),\n' ...
' or normest(R,0.01) if needed.\n']) ;
fprintf([ ...
'\nstats.time_basis -- the time to compute the basis for the ' ...
'numerical null space\n' ...
' following any calls to spqr and spqr_ssi. This will be small\n'...
' if the null space basis is returned in implicit form but can, '...
'in some cases,\n' ...
' be significant if the null space basis is returned as an ' ...
'explicit matrix.\n']) ;
fprintf ([ ...
'\nstats_ssi.time_iters, stats_ssp_N.time_iters, etc. -- the time ' ...
'for the\n' ...
' subspace iterations in spqr_ssi or spqr_ssp. Excludes time '...
'for initialization,\n' ...
' error flag calculation, etc..\n']) ;
fprintf ([ ...
'\nstats_ssi.time_est_error_bounds, ' ...
'stats_ssp_N.time_est_error_bounds, etc. -- the time\n' ...
' for estimating the singular value error bounds in ' ...
'spqr_ssi or spqr_ssp.\n']) ;
fprintf ([ ...
'\nstats.time_svd, stats_ssi.time_svd, etc. -- the total time ' ...
'for calls to MATLAB''s SVD\n' ...
' in the current routine and its subroutines.\n']) ;
end
end
%-------------------------------------------------------------------------------
% print_vector
%-------------------------------------------------------------------------------
function print_vector (x)
n = length (x) ;
for k = 1:n
fprintf (' %g', x (k)) ;
end
fprintf ('\n') ;
|