1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
//------------------------------------------------------------------------------
// SPEX/Python/spex_connect.c: use SPEX in Python
//------------------------------------------------------------------------------
// SPEX: (c) 2022-2024, Christopher Lourenco, Jinhao Chen,
// Lorena Mejia Domenzain, Erick Moreno-Centeno, and Timothy A. Davis.
// All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0-or-later or LGPL-3.0-or-later
//------------------------------------------------------------------------------
#include "spex_python_connect.h"
#include "spex_cholesky_internal.h"
#define FREE_WORKSPACE \
{ \
SPEX_matrix_free(&A, option); \
SPEX_matrix_free(&b, option); \
SPEX_matrix_free(&x, option); \
SPEX_matrix_free(&A_in, option); \
SPEX_matrix_free(&b_in, option); \
SPEX_FREE(option); \
SPEX_finalize(); \
}
SPEX_info spex_python
(
//output
void **sol_void, // solution
//input
int64_t *Ap, // column pointers of A, an array size is n+1
int64_t *Ai, // row indices of A, of size nzmax.
double *Ax, // values of A
double *bx, // values of b
int m, // Number of rows of A
int n, // Number of columns of A
int nz, // Number of nonzeros in A
int ordering, // type of ordering: 0-none, 1-colamd, 2-amd,
int algorithm, // 1-backslash, 2-left lu, 3-cholesky
bool charOut // True if char ** output, false if double
)
{
// this function will make the SPEX_matrix A, b and x and call
// spex_cholesky_backslash
SPEX_info info;
//--------------------------------------------------------------------------
// Prior to using SPEX Chol, its environment must be initialized. This is
// done by calling the SPEX_initialize() function.
//--------------------------------------------------------------------------
SPEX_initialize();
//--------------------------------------------------------------------------
// Validate Inputs
//--------------------------------------------------------------------------
if (!Ap || !Ai || !Ax || !bx)
{
return SPEX_INCORRECT_INPUT;
}
// ordering must be acceptable
if (ordering != 0 && ordering != 1 && ordering != 2)
{
return SPEX_INCORRECT_INPUT;
}
if (n == 0 || m == 0 || n != m)
{
return SPEX_INCORRECT_INPUT;
}
//--------------------------------------------------------------------------
// Declare our data structures
//--------------------------------------------------------------------------
SPEX_matrix A_in = NULL; //input matrix
SPEX_matrix b_in = NULL; //input rhs
SPEX_matrix A = NULL; //copy of input matrix in CSC MPZ
SPEX_matrix b = NULL; //copy of input rhs in CSC MPZ
SPEX_matrix x = NULL; //solution
SPEX_options option = NULL;
SPEX_create_default_options(&option);
option->order = ordering;
//--------------------------------------------------------------------------
// Allocate memory, populate in A and b
//--------------------------------------------------------------------------
SPEX_matrix_allocate(&A_in, SPEX_CSC, SPEX_FP64, n, n, nz, true, true,
option);
SPEX_matrix_allocate(&b_in, SPEX_DENSE, SPEX_FP64, n, 1, n, true, true,
option);
A_in->p=Ap;
A_in->i=Ai;
A_in->x.fp64=Ax;
b_in->x.fp64=bx;
// At this point, A_in is a shallow double CSC matrix. We make a copy of it
// with A. A is a CSC matrix with mpz entries
SPEX_matrix_copy(&A, SPEX_CSC, SPEX_MPZ, A_in, option);
// b is a dense matrix with mpz entries
SPEX_matrix_copy(&b, SPEX_DENSE, SPEX_MPZ, b_in, option);
//--------------------------------------------------------------------------
// solve Ax=b
//-------------------------------------------------------------------------
switch(algorithm)
{
case 1:
SPEX_CHECK( SPEX_backslash(&x, SPEX_MPQ, A, b, option));
break;
case 2:
SPEX_CHECK( SPEX_lu_backslash(&x, SPEX_MPQ, A, b, option));
break;
case 3:
SPEX_CHECK( SPEX_cholesky_backslash(&x, SPEX_MPQ, A, b, option));
break;
case 4:
SPEX_CHECK( SPEX_ldl_backslash(&x, SPEX_MPQ, A, b, option));
break;
default:
return SPEX_INCORRECT_INPUT;
}
//--------------------------------------------------------------------------
// Return output as desired type
//-----------------------------------------------------------------------
if(charOut)
{
//solution as string
for (int i = 0; i < n; ++i)
{
char *s ;
int status = SPEX_mpfr_asprintf (&s, "%Qd", x->x.mpq [i]);
if (status < 0)
{
printf("error converting x to string");
}
//check string size
int sizeStr;
sizeStr=strlen(s);
//allocate sol_char[i]
sol_void[i] = malloc (sizeStr + 1); // +1 for NULL terminator
//copy s into sol_char[i]
strcpy(sol_void[i],s);
}
}
else
{
//solution as double
SPEX_matrix x2 = NULL ;
SPEX_matrix_copy(&x2, SPEX_DENSE, SPEX_FP64, x, option);
/*for (int i = 0; i < n; ++i)
{
sol_doub[i]=x2->x.fp64[i];
}*/
for (int i = 0; i < n; ++i)
{
(sol_void[i])=&(x2->x.fp64[i]);
}
}
FREE_WORKSPACE;
return SPEX_OK;
}
|