1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
//------------------------------------------------------------------------------
// CHOLMOD/Cholesky/cholmod_spsolve: solve a linear system with sparse x and b
//------------------------------------------------------------------------------
// CHOLMOD/Cholesky Module. Copyright (C) 2005-2023, Timothy A. Davis
// All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
//------------------------------------------------------------------------------
// Given an LL' or LDL' factorization of A, solve one of the following systems:
//
// Ax=b 0: CHOLMOD_A also applies the permutation L->Perm
// LDL'x=b 1: CHOLMOD_LDLt does not apply L->Perm
// LDx=b 2: CHOLMOD_LD
// DL'x=b : CHOLMOD_DLt
// Lx=b 4: CHOLMOD_L
// L'x=b 5: CHOLMOD_Lt
// Dx=b 6: CHOLMOD_D
// x=Pb 7: CHOLMOD_P apply a permutation (P is L->Perm)
// x=P'b 8: CHOLMOD_Pt apply an inverse permutation
//
// where b and x are sparse. If L and b are real, then x is real. Otherwise,
// x is complex or zomplex, depending on the Common->prefer_zomplex parameter.
// All xtypes of x and b are supported (real, complex, and zomplex), and
// all dtypes.
#include "cholmod_internal.h"
#ifndef NCHOLESKY
//------------------------------------------------------------------------------
// t_cholmod_spsolve_worker
//------------------------------------------------------------------------------
#define DOUBLE
#define REAL
#include "t_cholmod_spsolve_worker.c"
#define COMPLEX
#include "t_cholmod_spsolve_worker.c"
#define ZOMPLEX
#include "t_cholmod_spsolve_worker.c"
#undef DOUBLE
#define SINGLE
#define REAL
#include "t_cholmod_spsolve_worker.c"
#define COMPLEX
#include "t_cholmod_spsolve_worker.c"
#define ZOMPLEX
#include "t_cholmod_spsolve_worker.c"
//------------------------------------------------------------------------------
// cholmod_spsolve
//------------------------------------------------------------------------------
cholmod_sparse *CHOLMOD(spsolve) // returns the sparse solution X
(
// input:
int sys, // system to solve
cholmod_factor *L, // factorization to use
cholmod_sparse *B, // right-hand-side
cholmod_common *Common
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
cholmod_dense *X4 = NULL, *B4 = NULL ;
cholmod_sparse *X = NULL ;
RETURN_IF_NULL_COMMON (NULL) ;
RETURN_IF_NULL (L, NULL) ;
RETURN_IF_NULL (B, NULL) ;
RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ;
RETURN_IF_XTYPE_INVALID (B, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ;
if (L->n != B->nrow)
{
ERROR (CHOLMOD_INVALID, "dimensions of L and B do not match") ;
return (NULL) ;
}
if (B->stype)
{
ERROR (CHOLMOD_INVALID, "B cannot be stored in symmetric mode") ;
return (NULL) ;
}
if (L->dtype != B->dtype)
{
ERROR (CHOLMOD_INVALID, "dtype of L and B must match") ;
return (NULL) ;
}
Common->status = CHOLMOD_OK ;
//--------------------------------------------------------------------------
// allocate workspace B4 and initial result X
//--------------------------------------------------------------------------
Int n = L->n ;
Int nrhs = B->ncol ;
// X is real if both L and B are real, complex/zomplex otherwise
int X_xtype =
(L->xtype == CHOLMOD_REAL && B->xtype == CHOLMOD_REAL) ? CHOLMOD_REAL :
(Common->prefer_zomplex ? CHOLMOD_ZOMPLEX : CHOLMOD_COMPLEX) ;
// solve up to 4 columns at a time
Int block = MIN (nrhs, 4) ;
// initial size of X is at most 4*n
size_t nzmax = ((size_t) n) * ((size_t) block) ;
X = CHOLMOD(spzeros) (n, nrhs, nzmax, X_xtype + B->dtype, Common) ;
B4 = CHOLMOD(zeros) (n, block, B->xtype + B->dtype, Common) ;
if (Common->status < CHOLMOD_OK)
{
CHOLMOD(free_sparse) (&X, Common) ;
CHOLMOD(free_dense) (&B4, Common) ;
return (NULL) ;
}
size_t xnz = 0 ;
//--------------------------------------------------------------------------
// solve in chunks of 4 columns at a time
//--------------------------------------------------------------------------
for (Int jfirst = 0 ; jfirst < nrhs ; jfirst += block)
{
//----------------------------------------------------------------------
// adjust the number of columns of B4
//----------------------------------------------------------------------
Int jlast = MIN (nrhs, jfirst + block) ;
B4->ncol = jlast - jfirst ;
//----------------------------------------------------------------------
// scatter B(jfirst:jlast-1) into B4
//----------------------------------------------------------------------
switch ((B->xtype + B->dtype) % 8)
{
case CHOLMOD_REAL + CHOLMOD_SINGLE:
rs_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_SINGLE:
cs_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_SINGLE:
zs_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_REAL + CHOLMOD_DOUBLE:
rd_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_DOUBLE:
cd_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_DOUBLE:
zd_cholmod_spsolve_B_scatter_worker (B4, B, jfirst, jlast) ;
break ;
}
//----------------------------------------------------------------------
// solve the system (X4 = A\B4 or other system)
//----------------------------------------------------------------------
X4 = CHOLMOD(solve) (sys, L, B4, Common) ;
if (Common->status < CHOLMOD_OK)
{
CHOLMOD(free_sparse) (&X, Common) ;
CHOLMOD(free_dense) (&B4, Common) ;
CHOLMOD(free_dense) (&X4, Common) ;
return (NULL) ;
}
ASSERT (X4->xtype == X_xtype) ;
//----------------------------------------------------------------------
// append the solution onto X
//----------------------------------------------------------------------
bool ok = true ;
switch ((X->xtype + X->dtype) % 8)
{
case CHOLMOD_REAL + CHOLMOD_SINGLE:
ok = rs_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_SINGLE:
ok = cs_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_SINGLE:
ok = zs_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
case CHOLMOD_REAL + CHOLMOD_DOUBLE:
ok = rd_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_DOUBLE:
ok = cd_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_DOUBLE:
ok = zd_cholmod_spsolve_X_worker (X, X4, jfirst, jlast, &xnz,
Common) ;
break ;
}
CHOLMOD(free_dense) (&X4, Common) ;
if (!ok)
{
// out of memory
CHOLMOD(free_sparse) (&X, Common) ;
CHOLMOD(free_dense) (&B4, Common) ;
return (NULL) ;
}
//----------------------------------------------------------------------
// clear B4 for next iteration
//----------------------------------------------------------------------
if (jlast < nrhs)
{
switch ((B->xtype + B->dtype) % 8)
{
case CHOLMOD_REAL + CHOLMOD_SINGLE:
rs_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_SINGLE:
cs_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_SINGLE:
zs_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_REAL + CHOLMOD_DOUBLE:
rd_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_COMPLEX + CHOLMOD_DOUBLE:
cd_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
case CHOLMOD_ZOMPLEX + CHOLMOD_DOUBLE:
zd_cholmod_spsolve_B_clear_worker (B4, B, jfirst, jlast) ;
break ;
}
}
}
//--------------------------------------------------------------------------
// finalize X, reduce it in size, free workspace, and return result
//--------------------------------------------------------------------------
Int *Xp = X->p ;
Xp [nrhs] = xnz ;
ASSERT (xnz <= X->nzmax) ;
CHOLMOD(reallocate_sparse) (xnz, X, Common) ;
ASSERT (Common->status == CHOLMOD_OK) ;
CHOLMOD(free_dense) (&B4, Common) ;
return (X) ;
}
#endif
|