1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
function cholmod_demo
%CHOLMOD_DEMO a demo for CHOLMOD
%
% Tests CHOLMOD with the sparse matrix problem used in the MATLAB bench
% program, with various sizes. Note that MATLAB uses CHOLMOD itself for
% x=A\b, chol, etc. so the timings should be comparable.
%
% See CHOLMOD/MATLAB/Test/cholmod_test.m for a lengthy test using
% matrices from the SuiteSparse Matrix Collection.
%
% Example:
% cholmod_demo
%
% See also bench.
% Copyright 2006-2023, Timothy A. Davis, All Rights Reserved.
% SPDX-License-Identifier: GPL-2.0+
help cholmod_demo
% matrix from bench (n = 600 is used in 'bench'):
for n = [600 1200]
A = delsq (numgrid ('L', n)) ;
try_matrix (A) ;
end
%-------------------------------------------------------------------------
function try_matrix (A)
% try_matrix: try a matrix with CHOLMOD
n = size (A,1) ;
S = sparse (A) ;
fprintf ('\n--------------------------------------------------------------\n') ;
if (issparse (A))
fprintf ('cholmod_demo: sparse matrix, n %d nnz %d\n', n, nnz (A)) ;
else
fprintf ('cholmod_demo: dense matrix, n %d\n', n) ;
end
k = max (1,fix(n/2)) ;
C = A (:,k) * 0.1 ;
try
% use built-in AMD
p = amd (S) ;
catch
try
% use AMD from SuiteSparse (../../AMD)
p = amd2 (S) ;
catch
% use SYMAMD
p = symamd (S) ;
end
end
S = S (p,p) ;
lnz = symbfact2 (S) ;
fl = sum (lnz.^2) ;
tic
L = lchol (S) ; %#ok
t1 = toc ;
fprintf ('CHOLMOD lchol(sparse(A)) time: %6.2f gflop %8.2f\n', ...
t1, 1e-9 * fl / t1) ;
tic
LD = ldlchol (S) ;
t2 = toc ;
fprintf ('CHOLMOD ldlchol(sparse(A)) time: %6.2f gflop %8.2f\n', ...
t2, 1e-9 * fl / t2) ;
tic
LD2 = ldlupdate (LD,C) ;
t3 = toc ;
fprintf ('CHOLMOD ldlupdate(sparse(A),C) time: %6.2f (rank-1, C dense)\n', t3) ;
[L,D] = ldlsplit (LD2) ;
% err = norm ((S+C*C') - L*D*L', 1) / norm (S,1) ;
err = ldl_normest ((S+C*C'), L, D) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
tic
LD3 = ldlrowmod (LD, k) ;
t4 = toc ;
fprintf ('CHOLMOD ldlrowmod(LD,k) time: %6.2f\n', t4) ;
[L,D] = ldlsplit (LD3) ;
S2 = S ;
I = speye (n) ;
S2 (k,:) = I (k,:) ;
S2 (:,k) = I (:,k) ;
% err = norm (S2 - L*D*L', 1) / norm (S,1) ;
err = ldl_normest (S2, L, D) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
LD4 = ldlchol (S2) ;
[L,D] = ldlsplit (LD4) ;
% err = norm (S2 - L*D*L', 1) / norm (S,1) ;
err = ldl_normest (S2, L, D) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
tic
R = chol (S) ; %#ok
s1 = toc ;
fprintf ('MATLAB chol(sparse(A)) time: %6.2f gflop %8.2f\n', ...
s1, 1e-9 * fl / s1) ;
fprintf ('CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): %6.1f\n', ...
s1 / t1) ;
b = sum (A)' ;
tic ;
x = A\b ;
t1 = toc ;
e1 = norm (A*x-b, 1) ;
tic ;
x = cholmod2 (A,b) ;
t2 = toc ;
e2 = norm (A*x-b) ;
fprintf ('MATLAB x=A\\b time: %8.4f resid: %8.0e\n', t1, e1) ;
fprintf ('CHOLMOD x=A\\b time: %8.4f resid: %8.0e\n', t2, e2) ;
fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ;
if (n > 4000)
% problem is too large for full matrix tests
return ;
end
% tests with full matrices:
X = full (C) ;
E = full (A) ;
tic
R = chol (E) ;
s2 = toc ;
fprintf ('MATLAB chol(full(A)) time: %6.2f gflop %8.2f\n', ...
s2, 1e-9 * fl / s2) ;
Z = full (R) ;
tic
Z = cholupdate (Z,X) ;
s3 = toc ;
fprintf ('MATLAB cholupdate(full(A),C) time: %6.2f (rank-1)\n', s3) ;
err = norm ((E+X*X') - Z'*Z, 1) / norm (E,1) ;
fprintf ('err: %g\n', err) ;
fprintf ('CHOLMOD sparse update speedup vs MATLAB DENSE update: %6.1f\n', ...
s3 / t3) ;
|