1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//------------------------------------------------------------------------------
// CHOLMOD/MATLAB/lsubsolve: MATLAB interface to CHOLMOD solver
//------------------------------------------------------------------------------
// CHOLMOD/MATLAB Module. Copyright (C) 2005-2023, Timothy A. Davis.
// All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0+
//------------------------------------------------------------------------------
// [x xset] = lsubsolve (L,kind,P,b,system)
//
// L is a sparse lower triangular matrix, of size n-by-n. kind = 0 if
// L is from an LL' factorization, 1 if from LDL' (in which case L contains
// L in the lower part and D on the diagonal). P is a permutation vector, or
// empty (which means P is identity). b is a sparse column vector.
// system is a number between 0 and 8:
//
// Given L or LD, a permutation P, and a sparse right-hand size b,
// solve one of the following systems:
//
// Ax=b 0: CHOLMOD_A also applies the permutation L->Perm
// LDL'x=b 1: CHOLMOD_LDLt does not apply L->Perm
// LDx=b 2: CHOLMOD_LD
// DL'x=b 3: CHOLMOD_DLt
// Lx=b 4: CHOLMOD_L
// L'x=b 5: CHOLMOD_Lt
// Dx=b 6: CHOLMOD_D
// x=Pb 7: CHOLMOD_P apply a permutation (P is L->Perm)
// x=P'b 8: CHOLMOD_Pt apply an inverse permutation
//
// The solution x is a dense vector, but it is a subset of the entire solution,
// x is zero except where xset is 1. xset is reach of b (or P*b) in the graph
// of L. If P is empty then it is treated as the identity permutation.
//
// No zeros can be dropped from the stucture of the Cholesky factorization
// because this function gets its elimination tree from L itself. See ldlchol
// for a method of constructing a sparse L with explicit zeros that are
// normally dropped by MATLAB.
//
// This function is only meant for testing the cholmod_solve2 function. The
// cholmod_solve2 function takes O(flops) time, but the setup time in this
// mexFunction wrapper can dominate that time.
#include "sputil2.h"
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
double dummy = 0, *Px ;
int64_t *Lp, *Lnz, *Xp, *Xi, xnz, *Perm, *Lprev, *Lnext ;
cholmod_sparse *Bset, Bmatrix, *Xset ;
cholmod_dense *Bdense, *X, *Y, *E ;
cholmod_factor *L ;
cholmod_common Common, *cm ;
int64_t k, j, n, head, tail, xsetlen ;
int sys, kind ;
//--------------------------------------------------------------------------
// start CHOLMOD and set parameters
//--------------------------------------------------------------------------
cm = &Common ;
cholmod_l_start (cm) ;
sputil2_config (SPUMONI, cm) ;
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
if (nargin != 5 || nargout > 2)
{
mexErrMsgTxt ("usage: [x xset] = lsubsolve (L,kind,P,b,system)") ;
}
n = mxGetN (pargin [0]) ;
if (!mxIsSparse (pargin [0]) || n != mxGetM (pargin [0]))
{
mexErrMsgTxt ("lsubsolve: L must be sparse and square") ;
}
if (mxGetNumberOfElements (pargin [1]) != 1)
{
mexErrMsgTxt ("lsubsolve: kind must be a scalar") ;
}
if (mxIsSparse (pargin [2]) ||
!(mxIsEmpty (pargin [2]) || mxGetNumberOfElements (pargin [2]) == n))
{
mexErrMsgTxt ("lsubsolve: P must be size n, or empty") ;
}
if (mxGetM (pargin [3]) != n || mxGetN (pargin [3]) != 1)
{
mexErrMsgTxt ("lsubsolve: b wrong dimension") ;
}
if (!mxIsSparse (pargin [3]))
{
mexErrMsgTxt ("lxbpattern: b must be sparse") ;
}
if (mxGetNumberOfElements (pargin [4]) != 1)
{
mexErrMsgTxt ("lsubsolve: system must be a scalar") ;
}
//--------------------------------------------------------------------------
// get the inputs
//--------------------------------------------------------------------------
kind = (int) mxGetScalar (pargin [1]) ;
sys = (int) mxGetScalar (pargin [4]) ;
//--------------------------------------------------------------------------
// get the sparse b
//--------------------------------------------------------------------------
// get sparse matrix B (unsymmetric)
size_t Bset_xsize = 0 ;
Bset = sputil2_get_sparse (pargin [3], 0, CHOLMOD_DOUBLE, &Bmatrix,
&Bset_xsize, cm) ;
Bdense = cholmod_l_sparse_to_dense (Bset, cm) ;
Bset->x = NULL ;
Bset->z = NULL ;
Bset->xtype = CHOLMOD_PATTERN ;
//--------------------------------------------------------------------------
// construct a shallow copy of the input sparse matrix L
//--------------------------------------------------------------------------
// the construction of the CHOLMOD takes O(n) time and memory
// allocate the CHOLMOD symbolic L
L = cholmod_l_allocate_factor (n, cm) ;
L->ordering = CHOLMOD_NATURAL ;
// get the MATLAB L
L->p = mxGetJc (pargin [0]) ;
L->i = mxGetIr (pargin [0]) ;
L->x = mxGetData (pargin [0]) ;
L->z = NULL ;
// allocate and initialize the rest of L
L->nz = cholmod_l_malloc (n, sizeof (int64_t), cm) ;
Lp = L->p ;
Lnz = L->nz ;
for (j = 0 ; j < n ; j++)
{
Lnz [j] = Lp [j+1] - Lp [j] ;
}
// these pointers are not accessed in cholmod_solve2
L->prev = cholmod_l_malloc (n+2, sizeof (int64_t), cm) ;
L->next = cholmod_l_malloc (n+2, sizeof (int64_t), cm) ;
Lprev = L->prev ;
Lnext = L->next ;
head = n+1 ;
tail = n ;
Lnext [head] = 0 ;
Lprev [head] = -1 ;
Lnext [tail] = -1 ;
Lprev [tail] = n-1 ;
for (j = 0 ; j < n ; j++)
{
Lnext [j] = j+1 ;
Lprev [j] = j-1 ;
}
Lprev [0] = head ;
L->xtype = (mxIsComplex (pargin [0])) ? CHOLMOD_COMPLEX : CHOLMOD_REAL ;
L->nzmax = Lp [n] ;
// get the permutation
if (mxIsEmpty (pargin [2]))
{
L->Perm = NULL ;
Perm = NULL ;
}
else
{
// convert from double to int64_t, and from 1-based to 0-based
L->ordering = CHOLMOD_GIVEN ;
L->Perm = cholmod_l_malloc (n, sizeof (int64_t), cm) ;
Perm = L->Perm ;
Px = (double *) mxGetData (pargin [2]) ;
for (k = 0 ; k < n ; k++)
{
Perm [k] = ((int64_t) Px [k]) - 1 ;
}
}
// set the kind, LL' or LDL'
L->is_ll = (kind == 0) ;
//--------------------------------------------------------------------------
// solve the system
//--------------------------------------------------------------------------
X = cholmod_l_zeros (n, 1, L->xtype, cm) ;
Xset = NULL ;
Y = NULL ;
E = NULL ;
cholmod_l_solve2 (sys, L, Bdense, Bset, &X, &Xset, &Y, &E, cm) ;
cholmod_l_free_dense (&Y, cm) ;
cholmod_l_free_dense (&E, cm) ;
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
pargout [0] = sputil2_put_dense (&X, mxDOUBLE_CLASS, cm) ;
// fill numerical values of Xset with one's
if (Xset == NULL)
{
// Px=b and P'x=b do not return Xset. Create Xset = 0:n-1
Xset = cholmod_l_spzeros (n, 1, n, CHOLMOD_REAL, cm) ;
int64_t *Xsetp = Xset->p ;
int64_t *Xseti = Xset->i ;
double *Xsetx = Xset->x ;
Xsetp [0] = 0 ;
Xsetp [1] = n ;
for (k = 0 ; k < n ; k++)
{
Xseti [k] = k ;
Xsetx [k] = 1 ;
}
}
else
{
// Xset is returned, but needs to be converted from PATTERN to REAL
int64_t *Xsetp = Xset->p ;
xsetlen = Xsetp [1] ;
Xset->x = cholmod_l_malloc (xsetlen, sizeof (double), cm) ;
double *Xsetx = Xset->x ;
for (k = 0 ; k < xsetlen ; k++)
{
Xsetx [k] = 1 ;
}
Xset->xtype = CHOLMOD_REAL ;
}
pargout [1] = sputil2_put_sparse (&Xset, mxDOUBLE_CLASS,
/* Xset is binary so it has no zeros to drop */ false, cm) ;
//--------------------------------------------------------------------------
// free workspace and the CHOLMOD L, except for what is copied to MATLAB
//--------------------------------------------------------------------------
L->p = NULL ;
L->i = NULL ;
L->x = NULL ;
L->z = NULL ;
cholmod_l_free_factor (&L, cm) ;
sputil2_free_sparse (&Bset, &Bmatrix, Bset_xsize, cm) ;
cholmod_l_finish (cm) ;
if (SPUMONI > 0) cholmod_l_print_common (" ", cm) ;
}
|