1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
//------------------------------------------------------------------------------
// CHOLMOD/MATLAB/mread: read a matrix in Matrix Market format
//------------------------------------------------------------------------------
// CHOLMOD/MATLAB Module. Copyright (C) 2005-2023, Timothy A. Davis.
// All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0+
//------------------------------------------------------------------------------
// [A Z] = mread (filename, prefer_binary)
//
// Read a sparse or dense matrix from a file in Matrix Market format.
//
// All MatrixMarket formats are supported.
// The Matrix Market "integer" format is converted into real, but the values
// are preserved. The "pattern" format is converted into real. If a pattern
// matrix is unsymmetric, all of its values are equal to one. If a pattern is
// symmetric, the kth diagonal entry is set to one plus the number of
// off-diagonal nonzeros in row/column k, and off-diagonal entries are set to
// -1.
//
// Explicit zero entries are returned as the binary pattern of the matrix Z.
#include "sputil2.h"
// maximum file length
#define MAXLEN 1030
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
void *G ;
cholmod_dense *X = NULL ;
cholmod_sparse *A = NULL, *Z = NULL ;
cholmod_common Common, *cm ;
int64_t *Ap = NULL, *Ai ;
double *Ax, *Az = NULL ;
char filename [MAXLEN] ;
int64_t nz, k, is_complex = FALSE, nrow = 0, ncol = 0 ;
int mtype ;
//--------------------------------------------------------------------------
// start CHOLMOD and set parameters
//--------------------------------------------------------------------------
cm = &Common ;
cholmod_l_start (cm) ;
sputil2_config (SPUMONI, cm) ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
if (nargin < 1 || nargin > 2 || nargout > 2)
{
mexErrMsgTxt ("usage: [A Z] = mread (filename, prefer_binary)") ;
}
if (!mxIsChar (pargin [0]))
{
mexErrMsgTxt ("mread requires a filename") ;
}
mxGetString (pargin [0], filename, MAXLEN) ;
sputil2_file = fopen (filename, "r") ;
if (sputil2_file == NULL)
{
mexErrMsgTxt ("cannot open file") ;
}
if (nargin > 1)
{
cm->prefer_binary = (mxGetScalar (pargin [1]) != 0) ;
}
//--------------------------------------------------------------------------
// read the matrix, as either a dense or sparse matrix
//--------------------------------------------------------------------------
G = cholmod_l_read_matrix (sputil2_file, 1, &mtype, cm) ;
fclose (sputil2_file) ;
sputil2_file = NULL ;
if (G == NULL)
{
mexErrMsgTxt ("could not read file") ;
}
// get the specific matrix (A or X), and change to complex if needed
if (mtype == CHOLMOD_SPARSE)
{
A = (cholmod_sparse *) G ;
nrow = A->nrow ;
ncol = A->ncol ;
Ap = A->p ;
Ai = A->i ;
if (A->xtype == CHOLMOD_ZOMPLEX)
{
// if complex, ensure A is complex, not zomplex
cholmod_l_sparse_xtype (CHOLMOD_COMPLEX, A, cm) ;
}
is_complex = (A->xtype == CHOLMOD_COMPLEX) ;
Ax = A->x ;
}
else if (mtype == CHOLMOD_DENSE)
{
X = (cholmod_dense *) G ;
nrow = X->nrow ;
ncol = X->ncol ;
if (X->xtype == CHOLMOD_ZOMPLEX)
{
// if complex, ensure X is complex, not zomplex
cholmod_l_dense_xtype (CHOLMOD_COMPLEX, X, cm) ;
}
is_complex = (X->xtype == CHOLMOD_COMPLEX) ;
Ax = X->x ;
}
else
{
mexErrMsgTxt ("invalid file") ;
}
//--------------------------------------------------------------------------
// if requested, extract the zero entries and place them in Z
//--------------------------------------------------------------------------
if (nargout > 1)
{
if (mtype == CHOLMOD_SPARSE)
{
// A is a sparse real/zomplex double matrix
Z = sputil2_extract_zeros (A, cm) ;
}
else
{
// input is full; just return an empty Z matrix
Z = cholmod_l_spzeros (nrow, ncol, 0, CHOLMOD_REAL, cm) ;
}
}
//--------------------------------------------------------------------------
// change a complex matrix to real if its imaginary part is all zero
//--------------------------------------------------------------------------
if (is_complex)
{
if (mtype == CHOLMOD_SPARSE)
{
nz = Ap [ncol] ;
}
else
{
nz = nrow * ncol ;
}
bool allzero = true ;
for (k = 0 ; k < nz ; k++)
{
if (Ax [2*k+1] != 0)
{
allzero = false ;
break ;
}
}
if (allzero)
{
// discard the all-zero imaginary part
if (mtype == CHOLMOD_SPARSE)
{
cholmod_l_sparse_xtype (CHOLMOD_REAL, A, cm) ;
}
else
{
cholmod_l_dense_xtype (CHOLMOD_REAL, X, cm) ;
}
}
}
//--------------------------------------------------------------------------
// return results to MATLAB
//--------------------------------------------------------------------------
if (mtype == CHOLMOD_SPARSE)
{
// drop explicit zeros from A; their pattern is kept in Z
pargout [0] = sputil2_put_sparse (&A, mxDOUBLE_CLASS,
/* drop explicit zeros */ true, cm) ;
}
else
{
pargout [0] = sputil2_put_dense (&X, mxDOUBLE_CLASS, cm) ;
}
if (nargout > 1)
{
pargout [1] = sputil2_put_sparse (&Z, mxDOUBLE_CLASS,
/* Z is binary so it has no zeros to drop */ false, cm) ;
}
//--------------------------------------------------------------------------
// free workspace
//--------------------------------------------------------------------------
cholmod_l_finish (cm) ;
if (SPUMONI > 0) cholmod_l_print_common (" ", cm) ;
}
|