1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
//------------------------------------------------------------------------------
// CHOLMOD/Modify/t_cholmod_rowdel_worker: delete row/col from LDL'
//------------------------------------------------------------------------------
// CHOLMOD/Modify Module. Copyright (C) 2005-2023, Timothy A. Davis,
// and William W. Hager. All Rights Reserved.
// SPDX-License-Identifier: GPL-2.0+
//------------------------------------------------------------------------------
#include "cholmod_template.h"
static int TEMPLATE (cholmod_rowdel_worker)
(
// input:
Int k, // row/column index to delete
cholmod_sparse *R, // NULL, or the nonzero pattern of kth row of L
Real yk [2], // kth entry in the solution to A*y=b
Int *colmark, // Int array of size 1. See cholmod_updown.c
// input/output:
cholmod_factor *L, // factor to modify
cholmod_dense *X, // solution to Lx=b (size n-by-1)
cholmod_dense *DeltaB, // change in b, zero on output
cholmod_common *Common
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
Int n = L->n ;
Real dk, xk, dj ;
Real *Xx, *Nx ;
Int *Rj, *Rp ;
Int j, p, pend, kk, lnz, left, right, middle, i, klast, given_row, rnz ;
if (R == NULL)
{
Rj = NULL ;
rnz = EMPTY ;
}
else
{
Rj = R->i ;
Rp = R->p ;
rnz = Rp [1] ;
}
bool do_solve = (X != NULL) && (DeltaB != NULL) ;
if (do_solve)
{
Xx = X->x ;
Nx = DeltaB->x ;
}
else
{
Xx = NULL ;
Nx = NULL ;
}
// inputs, not modified on output:
Int *Lp = L->p ; // size n+1
// outputs, contents defined on input for incremental case only:
Int *Lnz = L->nz ; // size n
Int *Li = L->i ; // size L->nzmax. Can change in size.
Real *Lx = L->x ; // size L->nzmax. Can change in size.
ASSERT (L->nz != NULL) ;
//--------------------------------------------------------------------------
// get workspace
//--------------------------------------------------------------------------
Real *W = Common->Xwork ; // size n, used only in cholmod_updown
Real *Cx = W + n ; // use 2nd column of Xwork for C (size n)
Int *Iwork = Common->Iwork ;
Int *Ci = Iwork + n ; // size n
// NOTE: cholmod_updown uses Iwork [0..n-1] as Stack
//--------------------------------------------------------------------------
// prune row k from all columns of L
//--------------------------------------------------------------------------
given_row = (rnz >= 0) ;
klast = given_row ? rnz : k ;
PRINT2 (("given_row "ID"\n", given_row)) ;
for (kk = 0 ; kk < klast ; kk++)
{
// either search j = 0:k-1 or j = Rj [0:rnz-1]
j = given_row ? (Rj [kk]) : (kk) ;
if (j < 0 || j >= k)
{
ERROR (CHOLMOD_INVALID, "R invalid") ;
return (FALSE) ;
}
PRINT2 (("Prune col j = "ID":\n", j)) ;
lnz = Lnz [j] ;
dj = Lx [Lp [j]] ;
ASSERT (Lnz [j] > 0 && Li [Lp [j]] == j) ;
if (lnz > 1)
{
left = Lp [j] ;
pend = left + lnz ;
right = pend - 1 ;
i = Li [right] ;
if (i < k)
{
// row k is not in column j
continue ;
}
else if (i == k)
{
// k is the last row index in this column (quick delete)
if (do_solve)
{
Xx [j] -= yk [0] * dj * Lx [right] ;
}
Lx [right] = 0 ;
}
else
{
// binary search for row k in column j
PRINT2 (("\nBinary search: lnz "ID" k = "ID"\n", lnz, k)) ;
while (left < right)
{
middle = (left + right) / 2 ;
PRINT2 (("left "ID" right "ID" middle "ID": ["ID" "ID""
""ID"]\n", left, right, middle,
Li [left], Li [middle], Li [right])) ;
if (k > Li [middle])
{
left = middle + 1 ;
}
else
{
right = middle ;
}
}
ASSERT (left >= Lp [j] && left < pend) ;
#ifndef NDEBUG
// brute force, linear-time search
{
Int p3 = Lp [j] ;
i = EMPTY ;
PRINT2 (("Brute force:\n")) ;
for ( ; p3 < pend ; p3++)
{
i = Li [p3] ;
PRINT2 (("p "ID" ["ID"]\n", p3, i)) ;
if (i >= k)
{
break ;
}
}
if (i == k)
{
ASSERT (k == Li [p3]) ;
ASSERT (p3 == left) ;
}
}
#endif
if (k == Li [left])
{
if (do_solve)
{
Xx [j] -= yk [0] * dj * Lx [left] ;
}
// found row k in column j. Prune it from the column.
Lx [left] = 0 ;
}
}
}
}
#ifndef NDEBUG
// ensure that row k has been deleted from the matrix L
for (j = 0 ; j < k ; j++)
{
Int lasti ;
lasti = EMPTY ;
p = Lp [j] ;
pend = p + Lnz [j] ;
// look for row k in column j
PRINT1 (("Pruned column "ID"\n", j)) ;
for ( ; p < pend ; p++)
{
i = Li [p] ;
PRINT2 ((" "ID"", i)) ;
PRINT2 ((" %g\n", Lx [p])) ;
ASSERT (IMPLIES (i == k, Lx [p] == 0)) ;
ASSERT (i > lasti) ;
lasti = i ;
}
PRINT1 (("\n")) ;
}
#endif
//--------------------------------------------------------------------------
// set diagonal and clear column k of L
//--------------------------------------------------------------------------
lnz = Lnz [k] - 1 ;
ASSERT (Lnz [k] > 0) ;
//--------------------------------------------------------------------------
// update/downdate
//--------------------------------------------------------------------------
// update or downdate L (k+1:n, k+1:n) with the vector
// C = L (:,k) * sqrt (abs (D [k]))
// Do a numeric update if D[k] > 0, numeric downdate otherwise.
PRINT1 (("rowdel downdate lnz = "ID"\n", lnz)) ;
// store the new unit diagonal
p = Lp [k] ;
pend = p + lnz + 1 ;
dk = Lx [p] ;
Lx [p++] = 1 ;
PRINT2 (("D [k = "ID"] = %g\n", k, dk)) ;
int ok = TRUE ;
double fl = 0 ;
if (lnz > 0)
{
// compute DeltaB for updown (in DeltaB)
if (do_solve)
{
xk = Xx [k] - yk [0] * dk ;
for ( ; p < pend ; p++)
{
Nx [Li [p]] += Lx [p] * xk ;
}
}
bool do_update = (dk > 0) ;
if (!do_update)
{
dk = -dk ;
}
Real sqrt_dk = sqrt (dk) ;
p = Lp [k] + 1 ;
for (kk = 0 ; kk < lnz ; kk++, p++)
{
Ci [kk] = Li [p] ;
Cx [kk] = Lx [p] * sqrt_dk ;
Lx [p] = 0 ; // clear column k
}
fl = lnz + 1 ;
// create a n-by-1 sparse matrix to hold the single column
cholmod_sparse *C, Cmatrix ;
Int Cp [2] ;
C = &Cmatrix ;
C->nrow = n ;
C->ncol = 1 ;
C->nzmax = lnz ;
C->sorted = TRUE ;
C->packed = TRUE ;
C->p = Cp ;
C->i = Ci ;
C->x = Cx ;
C->nz = NULL ;
C->itype = L->itype ;
C->xtype = L->xtype ;
C->dtype = L->dtype ;
C->z = NULL ;
C->stype = 0 ;
Cp [0] = 0 ;
Cp [1] = lnz ;
// numeric update if dk > 0, and with Lx=b change
// workspace: Flag (nrow), Head (nrow+1), W (nrow), Iwork (2*nrow)
ok = CHOLMOD(updown_mark) (do_update ? (1) : (0), C, colmark,
L, X, DeltaB, Common) ;
// clear workspace
for (kk = 0 ; kk < lnz ; kk++)
{
Cx [kk] = 0 ;
}
}
Common->modfl += fl ;
if (do_solve)
{
// kth equation becomes identity, so X(k) is now Y(k)
Xx [k] = yk [0] ;
}
return (ok) ;
}
#undef PATTERN
#undef REAL
#undef COMPLEX
#undef ZOMPLEX
|