| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 
 | //------------------------------------------------------------------------------
// GB_AxB__any_second_uint64.c: matrix multiply for a single semiring
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB_control.h"
#if defined (GxB_NO_UINT64)
#define GB_TYPE_ENABLED 0
#else
#define GB_TYPE_ENABLED 1
#endif
#if GB_TYPE_ENABLED
#include "GB.h"
#include "mxm/GB_AxB_saxpy.h"
#include "assign/GB_bitmap_assign_methods.h"
#include "FactoryKernels/GB_AxB__include2.h"
// semiring operators:
#define GB_MULTADD(z,a,b,i,k,j) z = b
#define GB_MULT(z,a,b,i,k,j)    z = b
#define GB_ADD(z,zin,t)         z = t
#define GB_UPDATE(z,t)          z = t
// identity: 0
// A matrix, typecast to A2 for multiplier input
#define GB_A_IS_PATTERN 1
#define GB_A_TYPE void
#define GB_A2TYPE void
#define GB_DECLAREA(aik)
#define GB_GETA(aik,Ax,pA,A_iso)
// B matrix, typecast to B2 for multiplier input
#define GB_B_TYPE uint64_t
#define GB_B2TYPE uint64_t
#define GB_DECLAREB(bkj) uint64_t bkj
#define GB_GETB(bkj,Bx,pB,B_iso) bkj = Bx [(B_iso) ? 0 : (pB)]
// C matrix
#define GB_C_ISO 0
#define GB_C_TYPE uint64_t
#define GB_PUTC(cij,Cx,p) Cx [p] = cij
// special case semirings:
// monoid properties:
#define GB_Z_TYPE uint64_t
#define GB_DECLARE_IDENTITY(z) uint64_t z = 0
#define GB_DECLARE_IDENTITY_CONST(z) const uint64_t z = 0
#define GB_Z_NBITS 64
#define GB_Z_ATOMIC_BITS 64
#define GB_Z_HAS_ATOMIC_UPDATE 1
#define GB_Z_HAS_OMP_ATOMIC_UPDATE 1
#define GB_Z_IGNORE_OVERFLOW 1
#define GB_IS_ANY_MONOID 1
#define GB_MONOID_IS_TERMINAL 1
// special case multipliers:
// disable this semiring and use the generic case if these conditions hold
#if (defined(GxB_NO_ANY) || defined(GxB_NO_SECOND) || defined(GxB_NO_UINT64) || defined(GxB_NO_ANY_UINT64) || defined(GxB_NO_SECOND_UINT64) || defined(GxB_NO_ANY_SECOND_UINT64))
#define GB_DISABLE 1
#else
#define GB_DISABLE 0
#endif
#include "mxm/include/GB_mxm_shared_definitions.h"
//------------------------------------------------------------------------------
// GB_Adot2B: C=A'*B, C<M>=A'*B, or C<!M>=A'*B: dot product method, C is bitmap
//------------------------------------------------------------------------------
// if A_not_transposed is true, then C=A*B is computed where A is bitmap or full
GrB_Info GB (_Adot2B__any_second_uint64)
(
    GrB_Matrix C,
    const GrB_Matrix M, const bool Mask_comp, const bool Mask_struct,
    const bool A_not_transposed,
    const GrB_Matrix A, int64_t *restrict A_slice,
    const GrB_Matrix B, int64_t *restrict B_slice,
    int nthreads, int naslice, int nbslice
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_dot2_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}
//------------------------------------------------------------------------------
// GB_Adot3B: C<M>=A'*B: masked dot product, C is sparse or hyper
//------------------------------------------------------------------------------
GrB_Info GB (_Adot3B__any_second_uint64)
(
    GrB_Matrix C,
    const GrB_Matrix M, const bool Mask_struct,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const GB_task_struct *restrict TaskList,
    const int ntasks,
    const int nthreads
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_dot3_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}
//------------------------------------------------------------------------------
// GB_AsaxbitB: C=A*B, C<M>=A*B, C<!M>=A*B: saxpy method, C is bitmap only
//------------------------------------------------------------------------------
#include "mxm/include/GB_AxB_saxpy3_template.h"
GrB_Info GB (_AsaxbitB__any_second_uint64)
(
    GrB_Matrix C,
    const GrB_Matrix M,
    const bool Mask_comp,
    const bool Mask_struct,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const int ntasks,
    const int nthreads,
    const int nfine_tasks_per_vector,
    const bool use_coarse_tasks,
    const bool use_atomics,
    const int64_t *restrict M_ek_slicing,
    const int M_nthreads,
    const int M_ntasks,
    const int64_t *restrict A_slice,
    const int64_t *restrict H_slice,
    GB_void *restrict Wcx,
    int8_t *restrict Wf
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;
    #include "mxm/template/GB_AxB_saxbit_template.c"
    return (GrB_SUCCESS) ;
    #endif
}
//------------------------------------------------------------------------------
// GB_Asaxpy3B: C=A*B, C<M>=A*B, C<!M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------
GrB_Info GB (_Asaxpy3B__any_second_uint64)
(
    GrB_Matrix C,   // C<any M>=A*B, C sparse or hypersparse
    const GrB_Matrix M, const bool Mask_comp, const bool Mask_struct,
    const bool M_in_place,
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_saxpy3task_struct *restrict SaxpyTasks,
    const int ntasks, const int nfine, const int nthreads, const int do_sort,
    GB_Werk Werk
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    ASSERT (GB_IS_SPARSE (C) || GB_IS_HYPERSPARSE (C)) ;
    if (M == NULL)
    {
        // C = A*B, no mask
        return (GB (_Asaxpy3B_noM__any_second_uint64) (C, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    else if (!Mask_comp)
    {
        // C<M> = A*B
        return (GB (_Asaxpy3B_M__any_second_uint64) (C,
            M, Mask_struct, M_in_place, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    else
    {
        // C<!M> = A*B
        return (GB (_Asaxpy3B_notM__any_second_uint64) (C,
            M, Mask_struct, M_in_place, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    #endif
}
//------------------------------------------------------------------------------
// GB_Asaxpy3B_M: C<M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------
#if ( !GB_DISABLE )
    GrB_Info GB (_Asaxpy3B_M__any_second_uint64)
    (
        GrB_Matrix C,   // C<M>=A*B, C sparse or hypersparse
        const GrB_Matrix M, const bool Mask_struct,
        const bool M_in_place,
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 0
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }
#endif
//------------------------------------------------------------------------------
// GB_Asaxpy3B_noM: C=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------
#if ( !GB_DISABLE )
    GrB_Info GB (_Asaxpy3B_noM__any_second_uint64)
    (
        GrB_Matrix C,   // C=A*B, C sparse or hypersparse
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 1
            #define GB_MASK_COMP 0
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 1
            #define GB_MASK_COMP 0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }
#endif
//------------------------------------------------------------------------------
// GB_Asaxpy3B_notM: C<!M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------
#if ( !GB_DISABLE )
    GrB_Info GB (_Asaxpy3B_notM__any_second_uint64)
    (
        GrB_Matrix C,   // C<!M>=A*B, C sparse or hypersparse
        const GrB_Matrix M, const bool Mask_struct,
        const bool M_in_place,
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 1
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 1
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }
#endif
#else
GB_EMPTY_PLACEHOLDER
#endif
 |