1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
# Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
# Copyright (C) 2016-2023 German Aerospace Center (DLR) and others.
# SUMOPy module
# Copyright (C) 2012-2021 University of Bologna - DICAM
# This program and the accompanying materials are made available under the
# terms of the Eclipse Public License 2.0 which is available at
# https://www.eclipse.org/legal/epl-2.0/
# This Source Code may also be made available under the following Secondary
# Licenses when the conditions for such availability set forth in the Eclipse
# Public License 2.0 are satisfied: GNU General Public License, version 2
# or later which is available at
# https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
# SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
# @file detectorflows.py
# @author Joerg Schweizer
# @date 2012
import os
import string
from collections import OrderedDict
import numpy as np
from numpy import random
import agilepy.lib_base.classman as cm
import agilepy.lib_base.arrayman as am
import agilepy.lib_base.xmlman as xm
from agilepy.lib_base.geometry import *
#from coremodules.modules_common import *
from coremodules.network.network import SumoIdsConf, MODES
from agilepy.lib_base.processes import Process, P, call, CmlMixin
from coremodules.misc.shapeformat import ShapefileImporter
class Detectorflows(cm.BaseObjman):
def __init__(self, ident='detectorflows', demand=None, name='Detector flows',
info='Flows measured by detectors, which can be used to generate vehicle routes using the DFRouter.',
**kwargs):
print('Detectorflows.__init__', name, kwargs)
self._init_objman(ident=ident,
parent=demand,
name=name,
info=info,
**kwargs)
attrsman = self.set_attrsman(cm.Attrsman(self))
self._init_attributes()
self._init_constants()
def _init_attributes(self):
attrsman = self.get_attrsman()
self.detectors = attrsman.add(cm.ObjConf(Detectors('detectors', self),
groupnames=['parameters'])
)
self.flowmeasurements = attrsman.add(cm.ObjConf(Flowmeasurements('flowmeasurements', self),
groupnames=['parameters'])
)
def get_scenario(self):
return self.parent.get_scenario()
def add_flows_to_edgeresults(self, edgeresults):
if not edgeresults.has_attrname('detectorflows'):
# add detector result attributes
attrinfos = OrderedDict([
('detectorflows', {'name': 'Detector flows',
# 'symbol':'F_{MA}',
'unit': None,
'default': 0,
'info': 'Flows measured by detectors.',
'xmltag': 'detectorFlows',
'groupnames': ['detectorflows']
}),
# more result attributes can be added ex. heavy duty flows
])
for attrname, kwargs in attrinfos.iteritems():
edgeresults.add_resultattr(attrname, **kwargs)
# reset Detector flow attributes
for attrconf in edgeresults.get_group('Detector flows'):
attrconf.detectorflows.reset()
# add flow measurements
detectors = self.detectors
flowmeasurements = self.flowmeasurements
net = self.get_scenario().net
ids_flow = flowmeasurements.get_ids()
for id_detector, period, flow_pax, flow_heavyduty in zip(
flowmeasurements.ids_detector[ids_flow],
flowmeasurements.timeperiods[ids_flow],
flowmeasurements.flows_passenger[ids_flow],
flowmeasurements.flows_heavyduty[ids_flow],):
if detectors.reliabilities[id_detector] > 0.8:
if (flow_pax > 0) | (flow_heavyduty > 0):
flow = 0.0
if (flow_pax > 0):
flow += flow_pax
if (flow_heavyduty > 0):
flow += flow_heavyduty
ids_lane = detectors.ids_lanes[id_detector]
if ids_lane is not None: # happens if no lenes could be matched
if len(ids_lane) > 0:
id_edge = net.lanes.ids_edge[ids_lane[0]]
if edgeresults.ids_edge.has_index(id_edge):
id_edgeres = edgeresults.ids_edge.get_id_from_index(id_edge)
edgeresults.detectorflows[id_edgeres] += flow
else:
edgeresults.add_row(ids_edge=id_edge,
detectorflows=flow
)
class Detectors(am.ArrayObjman):
def __init__(self, ident, detectorflows, **kwargs):
self._init_objman(ident, parent=detectorflows,
name='Detectors',
info='Contains detector data.',
xmltag=('detectors', 'detectorDefinition', 'ids_sumo'),
**kwargs)
self._init_attributes()
self._init_constants()
def _init_attributes(self):
self.add_col(SumoIdsConf('Detector', xmltag='id'))
self.add_col(am.IdlistsArrayConf('ids_lanes', self.get_scenario().net.lanes,
name='IDs Lane',
info="""Lane IDs where detector is located.
Single or multiple lanes must be from the same egde.
In case of multiple lanes the measured flows are distributed on the lanes using some heuristics.""",
))
if hasattr(self, 'ids_lane'):
self.delete('ids_lane')
self.add_col(am.ArrayConf('names', "",
dtype=np.object,
perm='rw',
name='Name',
info='Human readable detector name. Can be used to indicate detector location.',
))
self.add_col(am.ArrayConf('positions', 0.0,
perm='r',
name='Position',
unit='m',
xmltag='pos',
info='Position on edge where detector is located.',
))
self.add_col(am.ArrayConf('directions', 0.0,
perm='rw',
name='direction',
unit='DEG',
info='Direction of detector in degrees. North is zero degree. ',
))
self.add_col(am.ArrayConf('coords', np.zeros(3, dtype=np.float32),
groupnames=['state'],
perm='r',
name='Coords',
unit='m',
info='Dedector coordinate.',
is_plugin=True,
))
self.add_col(am.ArrayConf('reliabilities', 1.0,
perm='rw',
name='Reliability',
info='Reliability of detector: 0 = broken, 1 = fully reliable. Some detectors provide this information which can help to eliminate unreliable flow measurements.',
))
def get_scenario(self):
return self.parent.parent.get_scenario()
def match_detectors_to_lane(self, modename='passenger',
is_edgedetectors=True, is_check_direction=True,
n_targetedge=5, d_max=50.0,
phidelta_max=np.pi/180*10):
net = self.get_scenario().net
lanes = net.lanes
edges = net.edges
id_mode = net.modes.get_id_mode(modename)
accesslevels = edges.get_accesslevels(net.modes.get_id_mode(modename=modename))
get_ids_edge_from_inds_seg = edges.get_ids_edge_from_inds_seg
get_dist_point_to_edge = edges.get_dist_point_to_edge
get_closest_edge = edges.get_closest_edge
ids = self.get_ids()
for id_detect, point, phi in zip(ids, self.coords[ids], self.directions[ids]/180.0*np.pi+np.pi/2.0):
print(' Detector id_detect', id_detect, 'point', point)
ids_edge_target, dists = get_closest_edge(point, n_best=n_targetedge,
d_max=d_max,
is_ending=True,
is_detect_initial=False,
is_detect_final=False,
accesslevels=accesslevels
)
print(' ids_edge_target', ids_edge_target)
print(' dists', dists)
if is_check_direction:
id_edge_found = -1
i = 0
n = len(ids_edge_target)
while (id_edge_found < 0) & (i < n):
print(' check ids_edge', ids_edge_target[i], dists[i])
dist_point_edge, segment = get_dist_point_to_edge(point, ids_edge_target[i],
is_ending=True,
is_detect_initial=False,
is_detect_final=True,
is_return_segment=True,
)
x1, y1, x2, y2 = segment
phi_seg = np.arctan2(y2-y1, x2-x1)
phi_delta = np.abs(anglediff(phi, phi_seg))
if phi_delta < phidelta_max:
id_edge_found = ids_edge_target[i]
i += 1
elif len(ids_edge_target) > 0:
id_edge_found = ids_edge_target[0]
else:
id_edge_found = -1
if id_edge_found >= 0:
# select lane
ids_lane = edges.ids_lanes[id_edge_found]
print(' id_edge_found', id_edge_found, 'ids_lane', edges.ids_lanes[id_edge_found])
ids_lane_access = ids_lane[lanes.get_laneindexes_allowed(ids_lane, id_mode)]
print(' ids_lane_access', ids_lane_access)
if len(ids_lane_access) > 0:
if is_edgedetectors:
# associate all lanes with detector
self.ids_lanes[id_detect] = ids_lane_access
else:
# coose closest lane....TODO
self.ids_lanes[id_detect] = ids_lane_access
def write_xml(self, fd=None, indent=0):
# <detectors>
# <detectorDefinition id="<DETECTOR_ID>" lane="<LANE_ID>" pos="<POS>"/>
# ... further detectors ...
# </detectors>
print('Detectors.write_xml')
fd.write(xm.begin('detectors', indent))
ids = self.get_ids()
scenario = self.get_scenario()
get_sumoinfo_from_id_lane = scenario.net.lanes.get_sumoinfo_from_id_lane
for id_detector, ids_lane, pos in zip(
ids,
self.ids_lanes[ids],
self.positions[ids],
):
print(' write id_detector', id_detector, 'ids_lane', ids_lane)
if ids_lane is not None:
ind_lane = 0
for id_lane in ids_lane:
fd.write(xm.start('detectorDefinition', indent=indent+2))
fd.write(xm.num('id', self.get_id_xml_detector(id_detector, ind_lane)))
fd.write(xm.num('lane', get_sumoinfo_from_id_lane(id_lane)))
fd.write(xm.num('pos', pos))
fd.write(xm.stopit()) # ends detector defs
ind_lane += 1
fd.write(xm.end('detectors', indent))
def get_id_xml_detector(self, id_detector, ind_lane):
return self.ids_sumo[id_detector]+'/'+str(ind_lane)
def get_id_detector_ind_lane(self, id_xml):
if id_xml.count('/') > 0:
elements = id_xml.split('/')
id_sumo = string.join(elements[:-1], '/')
return self.ids_sumo.get_index(id_sumo), int(elements[-1])
else:
return self.ids_sumo.get_index(id_xml), 0
def export_sumoxml(self, filepath):
xm.write_obj_to_xml(self, filepath)
class Flowmeasurements(am.ArrayObjman):
def __init__(self, ident, detectorflows, **kwargs):
self._init_objman(ident, parent=detectorflows,
name='Flow measurements',
info='Flow measurements at detectors.',
#xmltag = ('detectors','detectorDefinition','ids_sumo'),
**kwargs)
self._init_attributes()
self._init_constants()
def _init_attributes(self):
"""
Detector;Time;qPKW;qLKW;vPKW;vLKW
myDet1;0;10;2;100;80
... further entries ...
This means the first time has to name the entries (columns). Their order is not of importance, but at least the following columns must be included:
Detector: A string holding the id of the detector this line describes; should be one of the ids used in <DETECTOR_FILE>
Time: The time period begin that this entry describes (in minutes)
qPKW: The number of passenger cars that drove over the detector within this time period
vPKW: The average speed of passenger cars that drove over the detector within this time period in km/h
The following columns may optionally be included:
qLKW: The number of transport vehicles that drove over the detector within this time period
vLKW: The average speed of transport vehicles that drove over the detector within this time period in km/h
"""
self.add_col(am.IdsArrayConf('ids_detector', self.parent.detectors,
name='ID Detector',
info='Detector ID which measured this flow.',
))
self.add_col(am.ArrayConf('timeperiods', 0.0,
perm='rw',
name='Time period',
unit='s',
info='Time period of flow measurement.',
))
self.add_col(am.ArrayConf('flows_passenger', 0.0,
perm='rw',
name='Passenger car flow',
info='Number of passenger cars detected during the corrisponding time period.',
))
self.add_col(am.ArrayConf('flows_heavyduty', 0.0,
perm='rw',
name='Heavy duty vehicle flow',
info='Number of heavy duty vehicles detected during the corrisponding time period.',
))
self.add_col(am.ArrayConf('speeds_passenger', 0.0,
perm='rw',
name='Passenger car speed',
unit='m/s',
info='Average velocity of passenger cars, detected during the corrisponding time period.',
))
self.add_col(am.ArrayConf('speeds_heavyduty', 0.0,
perm='rw',
name='Heavy duty vehicle speed',
unit='m/s',
info='Average velocity of heavy duty vehicles, detected during the corrisponding time period.',
))
# self.add_col(am.ArrayConf( 'types', '',
# perm='rw',
# choices = ["source", "sink", "between", "discarded", ""]
# name = 'Type',
# xmltag = 'type',
# info = 'Detector type.',
# ))
def get_demand(self):
return self.parent.parent
def add_flow(self, id_detector, timeperiod, flow_passenger,
flow_heavyduty=0.0, speed_passenger=-1.0, speed_heavyduty=-1.0):
if id_detector in self.parent.ids_sumo.get_value():
id_flow = self.add_row(ids_detector=id_detector,
timeperiods=timeperiod,
flows_passenger=flow_passenger,
flows_heavyduty=flow_heavyduty,
speeds_passenger=speed_passenger,
speeds_heavyduty=speed_heavyduty,
)
else:
id_flow = -1
return id_flow
def export_csv(self, filepath, t_offset=0, sep=";"):
net = self.parent.parent.get_net()
detectors = self.parent.detectors
ids_sumo_detector = detectors.ids_sumo
get_id_xml_detector = detectors.get_id_xml_detector
f = open(filepath, 'w')
f.write('Detector'+sep+'Time'+sep+'qPKW'+sep+'qLKW'+sep+'vPKW'+sep+'vLKW'+'\n')
#ids_flow = self.select_ids(self.flows_passenger.get_value()>=0)
print(' flows_passenger', self.flows_passenger.get_value())
ids_flow = self.get_ids()
for id_detector, t, flow_passenger, flow_heavyduty, speed_passenger, speed_heavyduty in \
zip(
self.ids_detector[ids_flow],
self.timeperiods[ids_flow],
self.flows_passenger[ids_flow],
self.flows_heavyduty[ids_flow],
self.speeds_passenger[ids_flow],
self.speeds_heavyduty[ids_flow]):
ids_lane = detectors.ids_lanes[id_detector]
if (ids_lane is not None) & (flow_passenger >= 0):
print(' id_detector', id_detector, 't', t, 'flow_passenger', flow_passenger, len(ids_lane))
n_lane = len(ids_lane)
for ind_lane, passengerflow_lane, heavyflow_lane in\
zip(xrange(n_lane),
self.distribute_passengerflow_over_lanes(ids_lane, flow_passenger),
self.distribute_heavyflow_over_lanes(ids_lane, flow_heavyduty)
):
f.write(get_id_xml_detector(id_detector, ind_lane))
f.write(sep+str(t))
f.write(sep+str(passengerflow_lane))
if flow_heavyduty >= 0:
f.write(sep+str(heavyflow_lane))
if speed_passenger >= 0:
f.write(sep+str(speed_passenger))
if speed_heavyduty >= 0:
f.write(sep+str(speed_heavyduty))
f.write("\n")
# format from
# https://sumo.dlr.de/wiki/Demand/Routes_from_Observation_Points
# Detector;Time;qPKW;qLKW;vPKW;vLKW
# myDet1;0;10;2;100;80
# ... further entries ...
f.close()
def distribute_heavyflow_over_lanes(self, ids_lane, flow, flow_max=600):
"""
Distribute measured edge traffic flow of lorries over the given lanes.
"""
n_lane = len(ids_lane)
flows_lane = np.zeros(n_lane, dtype=np.float32)
if n_lane <= 2:
flows_lane[0] = flow
else:
flows_lane[0:2] = [0.95*flow, 0.05*flow]
return np.array(flows_lane+0.5, dtype=np.int32)
def distribute_passengerflow_over_lanes(self, ids_lane, flow, flow_max=600):
"""
Distribute measured edge traffic flow of passenger cars over the given lanes.
"""
n_lane = len(ids_lane)
flows_lane = np.zeros(n_lane, dtype=np.float32)
if n_lane == 1:
flows_lane[0] = flow
elif n_lane == 2:
if flow/2 > flow_max:
flows_lane[0:2] = flow/2
elif flow > flow_max:
flows_lane[0:2] = [flow_max, flow-flow_max]
else:
flows_lane[0:2] = [0.8*flow, 0.2*flow]
elif n_lane == 3:
if flow/3 > flow_max:
flows_lane[0:3] = flow/3
elif flow/2 > flow_max:
flows_lane[0:3] = [flow_max, flow_max, flow-2*flow_max]
elif flow > flow_max:
flows_lane[0:3] = [0.5*(flow-flow_max), flow_max, 0.5*(flow-flow_max)]
else:
flows_lane[0:3] = [0.2*flow, 0.7*flow, 0.1*flow]
elif n_lane == 4:
if flow/4 > flow_max:
flows_lane[0:4] = flow/4
elif flow/3 > flow_max:
flows_lane[0:4] = [flow_max, flow_max, flow_max, flow-3*flow_max]
elif flow/2 > flow_max:
flows_lane[0:4] = [0.5*(flow-2*flow_max), flow_max, flow_max, 0.5*(flow-2*flow_max)]
elif flow > flow_max:
flows_lane[0:4] = [1.0/3.0*(flow-flow_max), flow_max, 1.0/3.0*(flow-flow_max), 1.0/3.0*(flow-flow_max)]
else:
flows_lane[0:4] = [0.2*flow, 0.5*flow, 0.2*flow, 0.1*flow]
else:
flows_lane[0:4] = 1.0*flow/n_lane
return np.array(flows_lane+0.5, dtype=np.int32)
def import_csv(self, filepath, t_offset=0, t_start=0, t_end=24*3600, sep=";"):
net = self.parent.parent.get_net()
detectors = self.parent.detectors
ids_sumo = detectors.ids_sumo
ids_detector = []
times = []
flows_passenger = []
flows_heavyduty = []
speeds_passenger = []
speeds_heavyduty = []
f = open(filepath, 'r')
# format from
# https://sumo.dlr.de/wiki/Demand/Routes_from_Observation_Points
# Detector;Time;qPKW;qLKW;vPKW;vLKW
# myDet1;0;10;2;100;80
# ... further entries ...
print('import_csv', filepath)
ind_col = 0
cols = f.readline().strip()
ind_col = 0
ind_detector = -1
ind_time = -1
ind_flow_passenger = -1
ind_flow_heavyduty = -1
ind_speed_passenger = -1
ind_speed_heavyduty = -1
if len(cols) >= 3:
for col in cols.split(sep):
if col == 'Detector':
ind_detector = ind_col
elif col == 'Time':
ind_time = ind_col
elif col == 'qPKW':
ind_flow_passenger = ind_col
elif col == 'qLKW':
ind_flow_heavyduty = ind_col
elif col == 'vPKW':
ind_speed_passenger = ind_col
elif col == 'vLKW':
ind_speed_heavyduty = ind_col
ind_col += 1
else:
return False
for line in f.readlines():
cols = line.split(sep)
# print ' cols=',cols
if len(cols) >= 3:
ind_col = 0
is_valid = True
t = 0.0
flow_passenger = -1
flow_heavyduty = -1
speed_passenger = -1
speed_heavyduty = -1
for col_raw in cols:
col = col_raw.strip()
if ind_col == ind_detector:
if ids_sumo.has_index(col):
id_sumo_detector = col
else:
is_valid = False
elif col.isdigit() & is_valid:
num = int(col)
if ind_col == ind_time:
t = num
elif ind_col == ind_flow_passenger:
flow_passenger = num
elif ind_col == ind_flow_heavyduty:
flow_heavyduty = num
elif ind_col == ind_speed_passenger:
speed_passenger = num
elif ind_col == ind_speed_heavyduty:
speed_heavyduty = num
else:
# invalid value
is_valid = False
ind_col += 1
if is_valid:
# print ' t',t,t_start,t_end,t+t_offset>=t_start,t+t_offset<t_end
if (t+t_offset >= t_start) & (t+t_offset < t_end):
ids_detector.append(ids_sumo.get_id_from_index(id_sumo_detector))
times.append(t)
flows_passenger.append(flow_passenger)
flows_heavyduty.append(flow_heavyduty)
speeds_passenger.append(speed_passenger)
speeds_heavyduty.append(speed_heavyduty)
# insert in database
ids_measure = self.add_rows(
ids_detector=ids_detector,
timeperiods=times,
flows_passenger=flows_passenger,
flows_heavyduty=flows_heavyduty,
speeds_passenger=speeds_passenger,
speeds_heavyduty=speeds_heavyduty,
)
f.close()
return ids_measure
def turnflows_to_routes(self, is_clear_trips=True, is_export_network=True,
is_make_probabilities=True, cmloptions=None,):
# jtrrouter --flow-files=<FLOW_DEFS>
# --turn-ratio-files=<TURN_DEFINITIONS> --net-file=<SUMO_NET> \
# --output-file=MySUMORoutes.rou.xml --begin <UINT> --end <UINT>
if is_make_probabilities:
self.normalize_turnprobabilities()
scenario = self.parent.get_scenario()
if cmloptions is None:
cmloptions = '-v --max-edges-factor 1 --seed 23423 --repair --ignore-vclasses false --ignore-errors --turn-defaults 5,90,5'
trips = scenario.demand.trips
if is_clear_trips:
# clear all current trips = routes
trips.clear_trips()
rootfilepath = scenario.get_rootfilepath()
netfilepath = scenario.net.get_filepath()
flowfilepath = rootfilepath+'.flow.xml'
turnfilepath = rootfilepath+'.turn.xml'
routefilepath = trips.get_routefilepath()
# first generate xml for net
scenario.net.export_netxml()
ids_mode = self.get_modes()
print('turnflows_to_routes', ids_mode) # scenario.net.modes.get_ids()
print(' cmloptions', cmloptions)
# route for all modes and read in routes
for id_mode in ids_mode:
# write flow and turns xml file for this mode
time_start, time_end = self.export_flows_and_turns(flowfilepath, turnfilepath, id_mode)
print(' time_start, time_end =', time_start, time_end)
if time_end > time_start: # means there exist some flows for this mode
cmd = 'jtrrouter --route-files=%s --turn-ratio-files=%s --net-file=%s --output-file=%s --begin %s --end %s %s'\
% (P+flowfilepath+P,
P+turnfilepath+P,
P+netfilepath+P,
P+routefilepath+P,
time_start,
time_end,
cmloptions,
)
# print '\n Starting command:',cmd
if call(cmd):
if os.path.isfile(routefilepath):
trips.import_routes_xml(routefilepath, is_generate_ids=True)
os.remove(routefilepath)
else:
print('jtrroute: no flows generated for id_mode', id_mode)
# self.simfiles.set_modified_data('rou',True)
# self.simfiles.set_modified_data('trip',True)
# trips and routes are not yet saved!!
class DetectorMatcher(Process):
def __init__(self, ident, detectors, logger=None, **kwargs):
print('DetectorMatcher.__init__')
# TODO: let this be independent, link to it or child??
self._init_common(ident,
parent=detectors,
name='Detector Matcher',
logger=logger,
info='Match detectors to lanes.',
)
attrsman = self.set_attrsman(cm.Attrsman(self))
net = detectors.get_scenario().net
self.modename = attrsman.add(cm.AttrConf('modename', kwargs.get('modename', 'passenger'),
groupnames=['options'],
choices=net.modes.names.get_indexmap().keys(),
name='Mode name',
info='Matched lanes must be accessible at least for this mode.',
))
print('net.modes.names.get_indexmap().keys()', net.modes.names.get_indexmap().keys(), self.modename)
self.is_edgedetectors = attrsman.add(cm.AttrConf('is_edgedetectors', kwargs.get('is_edgedetectors', False),
groupnames=['options'],
name='One detector per edge',
info="""If True, it is assumed that there is only one detector per edge
and detected edge flows will be distributed accross accessible lanes according to some heuristics.
If False then each detector is matched to one lane. This is somewhat risky and requires a good
geometrical coincidence between detector position and lane.
""",
))
self.is_check_direction = attrsman.add(cm.AttrConf('is_check_direction', kwargs.get('is_check_direction', False),
groupnames=['options'],
name='Use detector direction',
info="""If True, use director direction information to improve matching.
""",
))
self.phidelta_max = attrsman.add(cm.AttrConf('phidelta_max', kwargs.get('phidelta_max', 10.0),
groupnames=['options'],
name='Max. angle diff.',
unit='deg',
info="""Maximum difference of angels between detector and nearest edge segment.
To be used in conjunction with "Use detector direction" """,
))
self.d_max = attrsman.add(cm.AttrConf('d_max', kwargs.get('d_max', 20.0),
groupnames=['options'],
name='Maximum search dist.',
unit='m',
info="""Maximum search distance around detectors.""",
))
self.n_targetedge = attrsman.add(cm.AttrConf('n_targetedge', kwargs.get('n_targetedge', 5),
groupnames=['options'],
name='Number of target edges',
info="""Maximum number of considered target edges when searching for the nearest edge.
""",
))
self.d_max = attrsman.add(cm.AttrConf('d_max', kwargs.get('d_max', 20.0),
groupnames=['options'],
name='Maximum search dist.',
unit='m',
info="""Maximum search distance around detectors.""",
))
def do(self):
print('DetectorMatcher.do')
self.parent.match_detectors_to_lane(modename=self.modename,
is_edgedetectors=self.is_edgedetectors,
is_check_direction=self.is_check_direction,
n_targetedge=self.n_targetedge,
d_max=self.d_max,
phidelta_max=self.phidelta_max)
return True
class DFRouter(CmlMixin, Process):
def __init__(self, detectorflows, logger=None, **kwargs):
self._init_common('detectorflowrouter', name='Detectorflow Router',
parent=detectorflows,
logger=logger,
info='Generates routes from measured flows at detectors using the DFrouter.',
)
self.init_cml('dfrouter') # pass no commad to generate options only
attrsman = self.get_attrsman()
self.add_option('timestep', kwargs.get('timestep', 3600),
groupnames=['options', 'processing'],
cml='--time-step',
name='Time step',
info='Expected distance between two successive data sets.',
untit='s',
)
self.add_option('is_respect_concurrent_inflows', kwargs.get('is_respect_concurrent_inflows', False),
groupnames=['options', 'processing'],
cml='--respect-concurrent-inflows',
name='Respect concurrent inflows',
info='Try to determine further inflows to an inbetween detector when computing split probabilities.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('is_routes_for_all', kwargs.get('is_routes_for_all', False),
groupnames=['options', 'processing'],
cml='--routes-for-all',
name='Routes for inbetween detectors',
info='Forces DFROUTER to compute routes for in-between detectors.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
# self.add_option('is_guess_empty_flows', kwargs.get('is_guess_empty_flows',False),
# groupnames = ['processing'],#
# cml = '--guess-empty-flows',
# name = 'Guess empty flows',
# info = 'Derive missing flow values from upstream or downstream (not working!)',
# #is_enabled = lambda self: self.width_sublanes > 0,
# )
# self.add_option('is_ignore_invalid_detectors', kwargs.get('is_ignore_invalid_detectors',False),
# groupnames = ['processing',],#
# cml = '--ignore-invalid-detectors',
# name = 'Ignore invalid detectors',
# info = 'Only warn about unparseable detectors.',
# #is_enabled = lambda self: self.width_sublanes > 0,
# )
self.add_option('is_keep_unfinished_routes', kwargs.get('is_keep_unfinished_routes', False),
groupnames=['options', 'processing'],
cml='--keep-unfinished-routes',
name='Keep unfinished routes',
info='Keeps routes even if they have exhausted max-search-depth.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('is_keep_longer_routes', kwargs.get('is_keep_longer_routes', False),
groupnames=['options', 'processing'],
cml='--keep-longer-routes',
name='Keep longer routes',
info='eeps routes even if a shorter one exists.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('n_max_search_depth', kwargs.get('n_max_search_depth', 30),
groupnames=['options', 'processing'],
cml='--max-search-depth',
name='Max. search depth',
info='Number of edges to follow a route without passing a detector.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('is_keep_turnarounds', kwargs.get('is_keep_turnarounds', False),
groupnames=['options', 'processing'],
cml='--keep-turnarounds',
name='keep turnarounds',
info='Allow turnarounds as route continuations.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('length_min_route', kwargs.get('length_min_route', 500.0),
groupnames=['options', 'processing'],
cml='--min-route-length',
name='Min route length',
info='Minimum distance in meters between start and end node of every route.',
unit='m',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('is_randomize_flows', kwargs.get('is_randomize_flows', False),
groupnames=['options', 'processing'],
cml='--randomize-flows',
name='Randomize flows',
info='Generate random departure times for emitted vehicles.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('c_flows', kwargs.get('c_flows', 1.0),
groupnames=['options', 'processing'],
cml='--scale',
name='Flow scale factor',
info='Scale factor for flows.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('c_time', kwargs.get('c_time', 1.0),
groupnames=['options', 'processing'],
cml='--time-factor',
name='Time factor',
info='Multiply flow times with TIME to get seconds.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('time_offset', kwargs.get('time_offset', 0),
groupnames=['options', 'processing'],
cml='--time-offset',
name='Time offset',
info='Multiply flow times with TIME to get seconds.',
#is_enabled = lambda self: self.width_sublanes > 0,
)
self.add_option('seed', 1234,
groupnames=['options', 'processing'],
cml='--seed',
name='Random seed',
info='Initialises the random number generator with the given value.',
)
self.is_export_network = attrsman.add(am.AttrConf('is_export_network', True,
groupnames=['options', ],
perm='rw',
name='Export network',
info='Export network before routing.',
))
self.is_clear_trips = attrsman.add(am.AttrConf('is_clear_trips', True,
groupnames=['options'],
perm='rw',
name='Clear trips',
info='Clear all trips in current trips database before routing.',
))
# self.add_option('turnratiofilepath', turnratiofilepath,
# groupnames = ['_private'],#
# cml = '--turn-ratio-files',
# perm='r',
# name = 'Net file',
# wildcards = 'Net XML files (*.net.xml)|*.net.xml',
# metatype = 'filepath',
# info = 'SUMO Net file in XML format.',
# )
def do(self):
cmloptions = self.get_cml()
scenario = self.parent.get_scenario()
trips = scenario.demand.trips
if self.is_clear_trips:
# clear all current trips = routes
trips.clear_trips()
rootfilepath = scenario.get_rootfilepath()
netfilepath = scenario.net.get_filepath()
measuresfilepath = rootfilepath+'.measure.csv'
detectorsfilepath = rootfilepath+'.detect.xml'
emittersfilepath = rootfilepath+'.emitter.xml'
self.parent.flowmeasurements.export_csv(measuresfilepath)
self.parent.detectors.export_sumoxml(detectorsfilepath)
routefilepath = trips.get_routefilepath()
# first generate xml for net
if self.is_export_network:
scenario.net.export_netxml()
print('DFRouter.do')
print(' cmloptions', cmloptions)
# dfrouter --net-file bonet190614_ms_dflows.net --routes-output bonet190614_ms_dflows.rou.xml --emitters-output vehicles.xml --detector-files detectors.xml --measure-files bonet190614_ms_dflows.dflows2.csv
cmd = cmloptions + ' --net-file %s --detector-files %s --measure-files %s --routes-output %s --emitters-output %s'\
% (P+netfilepath+P,
P+detectorsfilepath+P,
P+measuresfilepath+P,
P+routefilepath+P,
P+emittersfilepath+P,
)
# print '\n Starting command:',cmd
if call(cmd):
if os.path.isfile(routefilepath):
scenario.demand.trips.import_routes_xml(routefilepath)
os.remove(routefilepath)
return True
else:
return False
else:
return False
class FlowsImporter(Process):
def __init__(self, ident='flowsimporter', flows=None,
name='Flows Importer',
info='Reads and imports flow measurements from detectors.',
filepath='', logger=None, **kwargs):
demand = flows.parent.parent
self._init_common(ident, name=name,
parent=flows,
logger=logger,
info=info,
)
attrsman = self.get_attrsman()
self.t_start = attrsman.add(am.AttrConf('t_start', 0,
groupnames=['options'],
perm='rw',
name='Start time',
unit='s',
info='Start reading detector data at this time.',
))
self.t_end = attrsman.add(am.AttrConf('t_end', 24*3600,
groupnames=['options'],
perm='rw',
name='End time',
unit='s',
info='Stop reading detector data at this time.',
))
self.t_offset = attrsman.add(am.AttrConf('t_offset', 0,
groupnames=['options'],
perm='rw',
name='Time offset',
unit='s',
info='Time offset added to the time of the measurement values prior to the verification of the time window.',
))
# here we get currently available vehicle classes not vehicle type
# specific vehicle type within a class will be generated later
self.id_mode = attrsman.add(am.AttrConf('id_mode', MODES['passenger'],
groupnames=['options'],
choices=demand.vtypes.get_modechoices(),
name='ID mode',
info='ID of transport mode.',
))
self.filepath = attrsman.add(am.AttrConf('filepath', filepath,
groupnames=['options'], # this will make it show up in the dialog
perm='rw',
name='Flow file',
wildcards="Flow CSV files (*.csv)|*.csv|CSV files (*.txt)|*.txt|All files (*.*)|*.*",
metatype='filepath',
info='CSV file with flow measurements from detectors for the specific mode and time interval.',
))
def update_params(self):
"""
Make all parameters consistent.
example: used by import OSM to calculate/update number of tiles
from process dialog
"""
pass
#self.workdirpath = os.path.dirname(self.netfilepath)
#bn = os.path.basename(self.netfilepath).split('.')
# if len(bn)>0:
# self.rootname = bn[0]
def do(self):
# self.update_params()
if os.path.isfile(self.filepath):
ids_measure = self.parent.import_csv(self.filepath,
t_offset=self.t_offset,
t_start=self.t_start,
t_end=self.t_end,
sep=";")
return True
else:
return False
class DetectorsFromShapeImporter(ShapefileImporter):
def __init__(self, ident='detectorsfromshapeimporter', detectors=None,
name='Detectors from Shapefile importer',
filepath='', logger=None, **kwargs):
net = detectors.parent.parent.get_net()
ShapefileImporter.__init__(self, ident, detectors,
name=name,
filepath=filepath,
coordsattr='coords',
attrnames_to_shapeattrs={'ids_sumo': 'ID',
'directions': '',
'names': '',
},
projparams_target=net.get_projparams(),
offset=net.get_offset(),
boundaries=net.get_boundaries(is_netboundaries=True),
logger=logger,
**kwargs)
|