1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#!/usr/bin/env python
# Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo
# Copyright (C) 2007-2020 German Aerospace Center (DLR) and others.
# This program and the accompanying materials are made available under the
# terms of the Eclipse Public License 2.0 which is available at
# https://www.eclipse.org/legal/epl-2.0/
# This Source Code may also be made available under the following Secondary
# Licenses when the conditions for such availability set forth in the Eclipse
# Public License 2.0 are satisfied: GNU General Public License, version 2
# or later which is available at
# https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
# SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
# @file plot_trajectories.py
# @author Jakob Erdmann
# @date 2018-08-18
"""
This script plots fcd data for each vehicle using either
- distance vs speed
- time vs speed
- time vs distance
Individual trajectories can be clicked in interactive mode to print the vehicle Id on the console
"""
from __future__ import absolute_import
from __future__ import print_function
import os
import sys
from collections import defaultdict
from optparse import OptionParser
import matplotlib
if 'matplotlib.backends' not in sys.modules:
if 'TEXTTEST_SANDBOX' in os.environ or (os.name == 'posix' and 'DISPLAY' not in os.environ):
matplotlib.use('Agg')
import matplotlib.pyplot as plt # noqa
import math # noqa
from sumolib.xml import parse_fast_nested # noqa
from sumolib.miscutils import uMin, uMax, parseTime # noqa
def getOptions(args=None):
optParser = OptionParser()
optParser.add_option("-t", "--trajectory-type", dest="ttype", default="ds",
help="select two letters from [t, s, d, a, i, x, y] to plot"
+ " Time, Speed, Distance, Acceleration, Angle, x-Position, y-Position."
+ " Default 'ds' plots Distance vs. Speed")
optParser.add_option("--persons", action="store_true", default=False, help="plot person trajectories")
optParser.add_option("-s", "--show", action="store_true", default=False, help="show plot directly")
optParser.add_option("-o", "--output", help="outputfile for saving plots", default="plot.png")
optParser.add_option("--csv-output", dest="csv_output", help="write plot as csv", metavar="FILE")
optParser.add_option("-b", "--ballistic", action="store_true", default=False,
help="perform ballistic integration of distance")
optParser.add_option("--filter-route", dest="filterRoute",
help="only export trajectories that pass the given list of edges (regardless of gaps)")
optParser.add_option("--filter-edges", dest="filterEdges",
help="only consider data for the given list of edges")
optParser.add_option("--filter-ids", dest="filterIDs",
help="only consider data for the given list of vehicle (or person) ids")
optParser.add_option("-p", "--pick-distance", dest="pickDist", type="float", default=1,
help="pick lines within the given distance in interactive plot mode")
optParser.add_option("-i", "--invert-distance-angle", dest="invertDistanceAngle", type="float",
help="invert distance for trajectories with a average angle near FLOAT")
optParser.add_option("--label", help="plot label (default input file name")
optParser.add_option("--invert-yaxis", dest="invertYAxis", action="store_true",
default=False, help="Invert the Y-Axis")
optParser.add_option("--legend", action="store_true", default=False, help="Add legend")
optParser.add_option("-v", "--verbose", action="store_true", default=False, help="tell me what you are doing")
options, args = optParser.parse_args(args=args)
if len(args) < 1:
sys.exit("mandatory argument FCD_FILE missing")
options.fcdfiles = args
if options.filterRoute is not None:
options.filterRoute = options.filterRoute.split(',')
if options.filterEdges is not None:
options.filterEdges = set(options.filterEdges.split(','))
if options.filterIDs is not None:
options.filterIDs = set(options.filterIDs.split(','))
return options
def write_csv(data, fname):
with open(fname, 'w') as f:
for veh, vals in sorted(data.items()):
f.write('"%s"\n' % veh)
for x in zip(*vals):
f.write(" ".join(map(str, x)) + "\n")
f.write('\n')
def short_names(filenames):
if len(filenames) == 1:
return filenames
reversedNames = [''.join(reversed(f)) for f in filenames]
prefixLen = len(os.path.commonprefix(filenames))
suffixLen = len(os.path.commonprefix(reversedNames))
return [f[prefixLen:-suffixLen] for f in filenames]
def onpick(event):
mevent = event.mouseevent
print("veh=%s x=%d y=%d" % (event.label, mevent.xdata, mevent.ydata))
def main(options):
fig = plt.figure(figsize=(14, 9), dpi=100)
fig.canvas.mpl_connect('pick_event', onpick)
xdata = 2
ydata = 1
typespec = {
't': ('Time', 0),
's': ('Speed', 1),
'd': ('Distance', 2),
'a': ('Acceleration', 3),
'i': ('Angle', 4),
'x': ('x-Position', 5),
'y': ('y-Position', 6),
}
shortFileNames = short_names(options.fcdfiles)
if (len(options.ttype) == 2
and options.ttype[0] in typespec
and options.ttype[1] in typespec):
xLabel, xdata = typespec[options.ttype[0]]
yLabel, ydata = typespec[options.ttype[1]]
plt.xlabel(xLabel)
plt.ylabel(yLabel)
plt.title(','.join(shortFileNames) if options.label is None else options.label)
else:
sys.exit("unsupported plot type '%s'" % options.ttype)
element = 'vehicle'
location = 'lane'
if options.persons:
element = 'person'
location = 'edge'
routes = defaultdict(list) # vehID -> recorded edges
# vehID -> (times, speeds, distances, accelerations, angles, xPositions, yPositions)
data = defaultdict(lambda: ([], [], [], [], [], [], []))
for fileIndex, fcdfile in enumerate(options.fcdfiles):
for timestep, vehicle in parse_fast_nested(fcdfile, 'timestep', ['time'],
element, ['id', 'x', 'y', 'angle', 'speed', location]):
vehID = vehicle.id
if options.filterIDs and vehID not in options.filterIDs:
continue
if len(options.fcdfiles) > 1:
suffix = shortFileNames[fileIndex]
if len(suffix) > 0:
vehID += "#" + suffix
if options.persons:
edge = vehicle.edge
else:
edge = vehicle.lane[0:vehicle.lane.rfind('_')]
if len(routes[vehID]) == 0 or routes[vehID][-1] != edge:
routes[vehID].append(edge)
if options.filterEdges and edge not in options.filterEdges:
continue
time = parseTime(timestep.time)
speed = float(vehicle.speed)
prevTime = time
prevSpeed = speed
prevDist = 0
if vehID in data:
prevTime = data[vehID][0][-1]
prevSpeed = data[vehID][1][-1]
prevDist = data[vehID][2][-1]
data[vehID][0].append(time)
data[vehID][1].append(speed)
data[vehID][4].append(float(vehicle.angle))
data[vehID][5].append(float(vehicle.x))
data[vehID][6].append(float(vehicle.y))
if prevTime == time:
data[vehID][3].append(0)
else:
data[vehID][3].append((speed - prevSpeed) / (time - prevTime))
if options.ballistic:
avgSpeed = (speed + prevSpeed) / 2
else:
avgSpeed = speed
data[vehID][2].append(prevDist + (time - prevTime) * avgSpeed)
def line_picker(line, mouseevent):
if mouseevent.xdata is None:
return False, dict()
# minxy = None
# mindist = 10000
for x, y in zip(line.get_xdata(), line.get_ydata()):
dist = math.sqrt((x - mouseevent.xdata) ** 2 + (y - mouseevent.ydata) ** 2)
if dist < options.pickDist:
return True, dict(label=line.get_label())
# else:
# if dist < mindist:
# print(" ", x,y, dist, (x - mouseevent.xdata) ** 2, (y - mouseevent.ydata) ** 2)
# mindist = dist
# minxy = (x, y)
# print(mouseevent.xdata, mouseevent.ydata, minxy, dist,
# line.get_label())
return False, dict()
minY = uMax
maxY = uMin
minX = uMax
maxX = uMin
for vehID, d in data.items():
if options.filterRoute is not None:
skip = False
route = routes[vehID]
for required in options.filterRoute:
if required not in route:
skip = True
break
if skip:
continue
if options.invertDistanceAngle is not None:
avgAngle = sum(d[4]) / len(d[4])
if abs(avgAngle - options.invertDistanceAngle) < 45:
maxDist = d[2][-1]
for i, v in enumerate(d[2]):
d[2][i] = maxDist - v
minY = min(minY, min(d[ydata]))
maxY = max(maxY, max(d[ydata]))
minX = min(minX, min(d[xdata]))
maxX = max(maxX, max(d[xdata]))
plt.plot(d[xdata], d[ydata], picker=line_picker, label=vehID)
if options.invertYAxis:
plt.axis([minX, maxX, maxY, minY])
if options.legend > 0:
plt.legend()
plt.savefig(options.output)
if options.csv_output is not None:
write_csv(data, options.csv_output)
if options.show:
plt.show()
if __name__ == "__main__":
main(getOptions())
|