1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
/*
* Sun clock - astronomical routines.
*/
#include "sunclock.h"
/* JDATE -- Convert internal GMT date and time to Julian day
and fraction. */
long
jdate(struct tm *t)
{
long c, m, y;
y = t->tm_year + 1900;
m = t->tm_mon + 1;
if (m > 2)
m = m - 3;
else {
m = m + 9;
y--;
}
c = y / 100L; /* Compute century */
y -= 100L * c;
return t->tm_mday + (c * 146097L) / 4 + (y * 1461L) / 4 +
(m * 153L + 2) / 5 + 1721119L;
}
/* JTIME -- Convert internal GMT date and time to astronomical
Julian time (i.e. Julian date plus day fraction,
expressed as a double). */
double
jtime(struct tm *t)
{
return (jdate(t) - 0.5) +
(((long) t->tm_sec) +
60L * (t->tm_min + 60L * t->tm_hour)) / 86400.0;
}
/* GMST -- Calculate Greenwich Mean Siderial Time for a given
instant expressed as a Julian date and fraction. */
double
gmst(double jd)
{
double t, theta0;
/* Time, in Julian centuries of 36525 ephemeris days,
measured from the epoch 1900 January 0.5 ET. */
t = ((floor(jd + 0.5) - 0.5) - 2415020.0) / 36525.0;
theta0 = 6.6460656 + 2400.051262 * t + 0.00002581 * t * t;
t = (jd + 0.5) - (floor(jd + 0.5));
theta0 += (t * 24.0) * 1.002737908;
theta0 = (theta0 - 24.0 * (floor(theta0 / 24.0)));
return theta0;
}
/* KEPLER -- Solve the equation of Kepler. */
double
kepler(double m, double ecc)
{
double e, delta;
#define EPSILON 1E-6
e = m = torad(m);
do {
delta = e - ecc * sin(e) - m;
e -= delta / (1 - ecc * cos(e));
} while (abs(delta) > EPSILON);
return e;
}
/* SUNPOS -- Calculate position of the Sun. JD is the Julian date
of the instant for which the position is desired and
APPARENT should be nonzero if the apparent position
(corrected for nutation and aberration) is desired.
The Sun's co-ordinates are returned in RA and DEC,
both specified in degrees (divide RA by 15 to obtain
hours). The radius vector to the Sun in astronomical
units is returned in RV and the Sun's longitude (true
or apparent, as desired) is returned as degrees in
SLONG. */
/* Obliquity of the ecliptic (radians) */
double epsrad;
void
sunpos(double jd, int apparent, double *ra, double *dec, double *rv, double *slong)
{
double t, t2, t3, l, m, e, ea, v, theta, thetarad, omega, eps;
/* Time, in Julian centuries of 36525 ephemeris days,
measured from the epoch 1900 January 0.5 ET. */
t = (jd - 2415020.0) / 36525.0;
t2 = t * t;
t3 = t2 * t;
/* Geometric mean longitude of the Sun, referred to the
mean equinox of the date. */
l = fixangle(279.69668 + 36000.76892 * t + 0.0003025 * t2);
/* Sun's mean anomaly. */
m = fixangle(358.47583 + 35999.04975*t - 0.000150*t2 - 0.0000033*t3);
/* Eccentricity of the Earth's orbit. */
e = 0.01675104 - 0.0000418 * t - 0.000000126 * t2;
/* Eccentric anomaly. */
ea = kepler(m, e);
/* True anomaly */
v = fixangle(2 * todeg(atan(sqrt((1 + e) / (1 - e)) * tan(ea / 2))));
/* Sun's true longitude. */
theta = l + v - m;
/* Obliquity of the ecliptic. */
eps = 23.452294 - 0.0130125 * t - 0.00000164 * t2 + 0.000000503 * t3;
/* Corrections for Sun's apparent longitude, if desired. */
if (apparent) {
omega = fixangle(259.18 - 1934.142 * t);
theta = theta - 0.00569 - 0.00479 * sin(torad(omega));
eps += 0.00256 * cos(torad(omega));
}
/* Return Sun's longitude and radius vector */
*slong = theta;
*rv = (1.0000002 * (1 - e * e)) / (1 + e * cos(torad(v)));
/* Determine solar co-ordinates. */
epsrad = torad(eps);
thetarad = torad(theta);
*ra = atan2((cos(epsrad) * sin(thetarad)), cos(thetarad));
*ra = fixangle(todeg(*ra));
*dec = todeg(asin(sin(epsrad)) * sin(thetarad));
}
/* Astronomical constants */
#define epoch 2444238.5 /* 1980 January 0.0 */
/* Constants defining the Sun's apparent orbit */
#define elonge 278.833540 /* Ecliptic longitude of the Sun
at epoch 1980.0 */
#define elongp 282.596403 /* Ecliptic longitude of the Sun at
perigee */
#define eccent 0.016718 /* Eccentricity of Earth's orbit */
#define sunsmax 1.495985e8 /* Semi-major axis of Earth's orbit, km */
#define sunangsiz 0.533128 /* Sun's angular size, degrees, at
semi-major axis distance */
/* Elements of the Moon's orbit, epoch 1980.0 */
#define mmlong 64.975464 /* Moon's mean longitude at the epoch */
#define mmlongp 349.383063 /* Mean longitude of the perigee at the
epoch */
#define mlnode 151.950429 /* Mean longitude of the node at the
epoch */
#define minc 5.145396 /* Inclination of the Moon's orbit */
#define mecc 0.054900 /* Eccentricity of the Moon's orbit */
#define mangsiz 0.5181 /* Moon's angular size at distance a
from Earth */
#define msmax 384401.0 /* Semi-major axis of Moon's orbit in km */
#define mparallax 0.9507 /* Parallax at distance a from Earth */
#define synmonth 29.53058868 /* Synodic month (new Moon to new Moon) */
#define lunatbase 2423436.0 /* Base date for E. W. Brown's numbered
series of lunations (1923 January 16) */
/* JYEAR -- Convert Julian date to year, month, day, which are
returned via integer pointers to integers. */
void jyear(double td, int *yy, int *mm, int *dd)
{
double j, d, y, m;
td += 0.5; /* Astronomical to civil */
j = floor(td);
j = j - 1721119.0;
y = floor(((4 * j) - 1) / 146097.0);
j = (j * 4.0) - (1.0 + (146097.0 * y));
d = floor(j / 4.0);
j = floor(((4.0 * d) + 3.0) / 1461.0);
d = ((4.0 * d) + 3.0) - (1461.0 * j);
d = floor((d + 4.0) / 4.0);
m = floor(((5.0 * d) - 3) / 153.0);
d = (5.0 * d) - (3.0 + (153.0 * m));
d = floor((d + 5.0) / 5.0);
y = (100.0 * y) + j;
if (m < 10.0)
m = m + 3;
else {
m = m - 9;
y = y + 1;
}
*yy = y;
*mm = m;
*dd = d;
}
/* JHMS -- Convert Julian time to hour, minutes, and seconds. */
void jhms(double j, int *h, int *m, int *s)
{
long ij;
j += 0.5; /* Astronomical to civil */
ij = (j - floor(j)) * 86400.0;
*h = ij / 3600L;
*m = (ij / 60L) % 60L;
*s = ij % 60L;
}
/* MEANPHASE -- Calculates mean phase of the Moon for a given
base date and desired phase:
0.0 New Moon
0.25 First quarter
0.5 Full moon
0.75 Last quarter
Beware!!! This routine returns meaningless
results for any other phase arguments. Don't
attempt to generalise it without understanding
that the motion of the moon is far more complicated
that this calculation reveals. */
double meanphase(double sdate, double phase, double *usek)
{
int yy, mm, dd;
double k, t, t2, t3, nt1;
jyear(sdate, &yy, &mm, &dd);
k = (yy + ((mm - 1) * (1.0 / 12.0)) - 1900) * 12.3685;
/* Time in Julian centuries from 1900 January 0.5 */
t = (sdate - 2415020.0) / 36525;
t2 = t * t; /* Square for frequent use */
t3 = t2 * t; /* Cube for frequent use */
*usek = k = floor(k) + phase;
nt1 = 2415020.75933 + synmonth * k
+ 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);
return nt1;
}
/* TRUEPHASE -- Given a K value used to determine the
mean phase of the new moon, and a phase
selector (0.0, 0.25, 0.5, 0.75), obtain
the true, corrected phase time. */
double truephase(double k, double phase)
{
double t, t2, t3, pt, m, mprime, f;
int apcor = 0;
k += phase; /* Add phase to new moon time */
t = k / 1236.85; /* Time in Julian centuries from
1900 January 0.5 */
t2 = t * t; /* Square for frequent use */
t3 = t2 * t; /* Cube for frequent use */
pt = 2415020.75933 /* Mean time of phase */
+ synmonth * k
+ 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);
m = 359.2242 /* Sun's mean anomaly */
+ 29.10535608 * k
- 0.0000333 * t2
- 0.00000347 * t3;
mprime = 306.0253 /* Moon's mean anomaly */
+ 385.81691806 * k
+ 0.0107306 * t2
+ 0.00001236 * t3;
f = 21.2964 /* Moon's argument of latitude */
+ 390.67050646 * k
- 0.0016528 * t2
- 0.00000239 * t3;
if ((phase < 0.01) || (abs(phase - 0.5) < 0.01)) {
/* Corrections for New and Full Moon */
pt += (0.1734 - 0.000393 * t) * dsin(m)
+ 0.0021 * dsin(2 * m)
- 0.4068 * dsin(mprime)
+ 0.0161 * dsin(2 * mprime)
- 0.0004 * dsin(3 * mprime)
+ 0.0104 * dsin(2 * f)
- 0.0051 * dsin(m + mprime)
- 0.0074 * dsin(m - mprime)
+ 0.0004 * dsin(2 * f + m)
- 0.0004 * dsin(2 * f - m)
- 0.0006 * dsin(2 * f + mprime)
+ 0.0010 * dsin(2 * f - mprime)
+ 0.0005 * dsin(m + 2 * mprime);
apcor = !0;
} else if ((abs(phase - 0.25) < 0.01 || (abs(phase - 0.75) < 0.01))) {
pt += (0.1721 - 0.0004 * t) * dsin(m)
+ 0.0021 * dsin(2 * m)
- 0.6280 * dsin(mprime)
+ 0.0089 * dsin(2 * mprime)
- 0.0004 * dsin(3 * mprime)
+ 0.0079 * dsin(2 * f)
- 0.0119 * dsin(m + mprime)
- 0.0047 * dsin(m - mprime)
+ 0.0003 * dsin(2 * f + m)
- 0.0004 * dsin(2 * f - m)
- 0.0006 * dsin(2 * f + mprime)
+ 0.0021 * dsin(2 * f - mprime)
+ 0.0003 * dsin(m + 2 * mprime)
+ 0.0004 * dsin(m - 2 * mprime)
- 0.0003 * dsin(2 * m + mprime);
if (phase < 0.5)
/* First quarter correction */
pt += 0.0028 - 0.0004 * dcos(m) + 0.0003 * dcos(mprime);
else
/* Last quarter correction */
pt += -0.0028 + 0.0004 * dcos(m) - 0.0003 * dcos(mprime);
apcor = !0;
}
if (!apcor) {
fprintf(stderr, "TRUEPHASE called with invalid phase selector.\n");
abort();
}
return pt;
}
/* PHASEHUNT -- Find time of phases of the moon which surround
the current date. Five phases are found, starting
and ending with the new moons which bound the
current lunation. */
void phasehunt(double sdate, double phases[5])
{
double adate, k1, k2, nt1, nt2;
adate = sdate - 45;
nt1 = meanphase(adate, 0.0, &k1);
while (1) {
adate += synmonth;
nt2 = meanphase(adate, 0.0, &k2);
if (nt1 <= sdate && nt2 > sdate)
break;
nt1 = nt2;
k1 = k2;
}
phases[0] = truephase(k1, 0.0);
phases[1] = truephase(k1, 0.25);
phases[2] = truephase(k1, 0.5);
phases[3] = truephase(k1, 0.75);
phases[4] = truephase(k2, 0.0);
}
/* PHASE -- Calculate phase of moon as a fraction:
The argument is the time for which the phase is requested,
expressed as a Julian date and fraction. Returns the terminator
phase angle as a percentage of a full circle (i.e., 0 to 1),
and stores into pointer arguments the illuminated fraction of
the Moon's disc, the Moon's age in days and fraction, the
distance of the Moon from the centre of the Earth, and the
angular diameter subtended by the Moon as seen by an observer
at the centre of the Earth.
*/
double
phase(time_t gtime, double *lat, double *lon, double *pphase, double *mage, double *dist, double *angdia, double *sudist, double *suangdia)
// double *lat; /* Latitude in degrees/Earth */
// double *lon; /* Longitude in degrees/Earth */
// double *pphase; /* Illuminated fraction */
// double *mage; /* Age of moon in days */
// double *dist; /* Distance in kilometres */
// double *angdia; /* Angular diameter in degrees */
// double *sudist; /* Distance to Sun */
// double *suangdia; /* Sun's angular diameter */
{
struct tm ctp;
double pdate, xg, yg, zg, xe, ye, ze, ra;
double Day, N, M, Msin, Ec,
Lambdasun, ml, MM, MN, Ev, Ae, A3, MmP, MmPrad,
mEc, A4, lP, V, lPP, lPPnode, NP, Lambdamoon, BetaM,
MoonAge, MoonPhase,
MoonDist, MoonDFrac, MoonAng, MoonPar,
F, SunDist, SunAng;
/* Calculation of the Sun's position */
ctp = *gmtime(>ime);
pdate = jtime(&ctp);
Day = pdate - epoch; /* Date within epoch */
N = fixangle((360 / 365.2422) * Day); /* Mean anomaly of the Sun */
M = fixangle(N + elonge - elongp); /* Convert from perigee
co-ordinates to epoch 1980.0 */
Msin = sin(torad(M));
Ec = kepler(M, eccent); /* Solve equation of Kepler */
Ec = sqrt((1 + eccent) / (1 - eccent)) * tan(Ec / 2);
Ec = 2 * todeg(atan(Ec)); /* True anomaly */
Lambdasun = fixangle(Ec + elongp); /* Sun's geocentric ecliptic
longitude */
/* Orbital distance factor */
F = ((1 + eccent * cos(torad(Ec))) / (1 - eccent * eccent));
SunDist = sunsmax / F; /* Distance to Sun in km */
SunAng = F * sunangsiz; /* Sun's angular size in degrees */
/* Calculation of the Moon's position */
/* Moon's mean longitude */
ml = fixangle(13.1763966 * Day + mmlong);
/* Moon's mean anomaly */
MM = fixangle(ml - 0.1114041 * Day - mmlongp);
/* Moon's ascending node mean longitude */
MN = fixangle(mlnode - 0.0529539 * Day);
/* Evection */
Ev = 1.2739 * sin(torad(2 * (ml - Lambdasun) - MM));
/* Annual equation */
Ae = 0.1858 * Msin;
/* Correction term */
A3 = 0.37 * Msin;
/* Corrected anomaly */
MmP = MM + Ev - Ae - A3;
MmPrad = torad(MmP);
/* Correction for the equation of the centre */
mEc = 6.2886 * sin(MmPrad);
/* Another correction term */
A4 = 0.214 * sin(2 * MmPrad);
/* Corrected longitude */
lP = ml + Ev + mEc - Ae + A4;
/* Variation */
V = 0.6583 * sin(torad(2 * (lP - Lambdasun)));
/* True longitude */
lPP = lP + V;
/* Corrected longitude of the node */
NP = MN - 0.16 * Msin;
/* Relative Longitude with respect to the node */
lPPnode = torad(lPP - NP);
/* x, y, z ecliptic coordinates with respect to node */
xe = cos(lPPnode);
ye = sin(lPPnode) * cos(torad(minc));
ze = sin(lPPnode) * sin(torad(minc));
/* Ecliptic latitude */
BetaM = todeg(asin(ze));
/* Ecliptic longitude */
Lambdamoon = todeg(atan2(ye, xe));
Lambdamoon += NP;
/* x, y, z sidereal ecliptic coordinates */
xe = cos(torad(Lambdamoon));
ye = sin(torad(Lambdamoon));
/* Calculation of the phase of the Moon */
/* Age of the Moon in degrees */
MoonAge = lPP - Lambdasun;
/* Phase of the Moon */
MoonPhase = (1 - cos(torad(MoonAge))) / 2;
/* Calculate distance of moon from the centre of the Earth */
MoonDist = (msmax * (1 - mecc * mecc)) /
(1 + mecc * cos(torad(MmP + mEc)));
/* Calculate Moon's angular diameter */
MoonDFrac = MoonDist / msmax;
MoonAng = mangsiz / MoonDFrac;
/* Calculate Moon's parallax */
MoonPar = mparallax / MoonDFrac;
*pphase = MoonPhase;
*mage = synmonth * (fixangle(MoonAge) / 360.0);
*dist = MoonDist;
*angdia = MoonAng;
*sudist = SunDist;
*suangdia = SunAng;
/* Rotate to equatorial geocentric coords
taking into account obliquity of ecliptic of date */
xg = xe;
yg = ye * cos(epsrad) - ze * sin(epsrad);
zg = ye * sin(epsrad) + ze * cos(epsrad);
ra = todeg(atan2(yg, xg));
*lat = todeg(asin(zg));
*lon = fixangle((ra + 180.0 - (gmst(pdate) * 15.0))) - 180.0;
return fixangle(MoonAge) / 360.0;
}
|