1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*---------------------------------------------------------------
* Programmer(s): Shelby Lockhart @ LLNL
*---------------------------------------------------------------
* Based on the serial code ark_heat1D.c developed by
* Daniel R. Reynolds @ SMU and parallelized with OpenMP
*---------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2019, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
*---------------------------------------------------------------
* Example problem:
*
* The following test simulates a simple 1D heat equation,
* u_t = k*u_xx + f
* for t in [0, 10], x in [0, 1], with initial conditions
* u(0,x) = 0
* Dirichlet boundary conditions, i.e.
* u_t(t,0) = u_t(t,1) = 0,
* and a point-source heating term,
* f = 1 for x=0.5.
*
* The spatial derivatives are computed using second-order
* centered differences, with the data distributed over N points
* on a uniform spatial grid.
*
* This program solves the problem with either an ERK or DIRK
* method. For the DIRK method, we use a Newton iteration with
* the SUNPCG linear solver, and a user-supplied Jacobian-vector
* product routine.
*
* 100 outputs are printed at equal intervals, and run statistics
* are printed at the end.
*---------------------------------------------------------------*/
/* Header files */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <arkode/arkode_arkstep.h> /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_openmp.h> /* OpenMP N_Vector types, fcts., macros */
#include <sunlinsol/sunlinsol_pcg.h> /* access to PCG SUNLinearSolver */
#include <sundials/sundials_types.h> /* defs. of realtype, sunindextype, etc */
#include <sundials/sundials_math.h> /* def. of SUNRsqrt, etc. */
#ifdef _OPENMP
#include <omp.h> /* OpenMP function defs. */
#endif
#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif
/* user data structure */
typedef struct {
sunindextype N; /* number of intervals */
int nthreads; /* number of OpenMP threads */
realtype dx; /* mesh spacing */
realtype k; /* diffusion coefficient */
} *UserData;
/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(N_Vector v, N_Vector Jv, realtype t, N_Vector y,
N_Vector fy, void *user_data, N_Vector tmp);
/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);
/* Main Program */
int main(int argc, char *argv[]) {
/* general problem parameters */
realtype T0 = RCONST(0.0); /* initial time */
realtype Tf = RCONST(1.0); /* final time */
int Nt = 10; /* total number of output times */
realtype rtol = 1.e-6; /* relative tolerance */
realtype atol = 1.e-10; /* absolute tolerance */
UserData udata = NULL;
realtype *data;
sunindextype N = 201; /* spatial mesh size */
realtype k = 0.5; /* heat conductivity */
sunindextype i;
/* general problem variables */
int flag; /* reusable error-checking flag */
N_Vector y = NULL; /* empty vector for storing solution */
SUNLinearSolver LS = NULL; /* empty linear solver object */
void *arkode_mem = NULL; /* empty ARKStep memory structure */
FILE *FID, *UFID;
realtype t, dTout, tout;
int iout, num_threads;
long int nst, nst_a, nfe, nfi, nsetups, nli, nJv, nlcf, nni, ncfn, netf;
/* set the number of threads to use */
num_threads = 1; /* default value */
#ifdef _OPENMP
num_threads = omp_get_max_threads(); /* overwrite with OMP_NUM_THREADS environment variable */
#endif
if (argc > 1) /* overwrite with command line value, if supplied */
num_threads = strtol(argv[1], NULL, 0);
/* allocate and fill udata structure */
udata = (UserData) malloc(sizeof(*udata));
udata->N = N;
udata->k = k;
udata->dx = RCONST(1.0)/(1.0*N-1.0); /* mesh spacing */
udata->nthreads = num_threads;
/* Initial problem output */
printf("\n1D Heat PDE test problem:\n");
printf(" N = %li\n", (long int) udata->N);
printf(" diffusion coefficient: k = %"GSYM"\n", udata->k);
/* Initialize data structures */
y = N_VNew_OpenMP(N, num_threads); /* Create OpenMP vector for solution */
if (check_flag((void *) y, "N_VNew_OpenMP", 0)) return 1;
N_VConst(0.0, y); /* Set initial conditions */
arkode_mem = ARKStepCreate(NULL, f, T0, y); /* Create the solver memory */
if (check_flag((void *) arkode_mem, "ARKStepCreate", 0)) return 1;
/* Set routines */
flag = ARKStepSetUserData(arkode_mem, (void *) udata); /* Pass udata to user functions */
if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;
flag = ARKStepSetMaxNumSteps(arkode_mem, 10000); /* Increase max num steps */
if (check_flag(&flag, "ARKStepSetMaxNumSteps", 1)) return 1;
flag = ARKStepSetPredictorMethod(arkode_mem, 1); /* Specify maximum-order predictor */
if (check_flag(&flag, "ARKStepSetPredictorMethod", 1)) return 1;
flag = ARKStepSStolerances(arkode_mem, rtol, atol); /* Specify tolerances */
if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;
/* Initialize PCG solver -- no preconditioning, with up to N iterations */
LS = SUNLinSol_PCG(y, 0, N);
if (check_flag((void *)LS, "SUNLinSol_PCG", 0)) return 1;
/* Linear solver interface -- set user-supplied J*v routine (no 'jtsetup' required) */
flag = ARKStepSetLinearSolver(arkode_mem, LS, NULL); /* Attach linear solver to ARKStep */
if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
flag = ARKStepSetJacTimes(arkode_mem, NULL, Jac); /* Set the Jacobian routine */
if (check_flag(&flag, "ARKStepSetJacTimes", 1)) return 1;
/* Specify linearly implicit RHS, with non-time-dependent Jacobian */
flag = ARKStepSetLinear(arkode_mem, 0);
if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;
/* output mesh to disk */
FID=fopen("heat_mesh.txt","w");
for (i=0; i<N; i++) fprintf(FID," %.16"ESYM"\n", udata->dx*i);
fclose(FID);
/* Open output stream for results, access data array */
UFID=fopen("heat1D.txt","w");
data = N_VGetArrayPointer(y);
/* output initial condition to disk */
for (i=0; i<N; i++) fprintf(UFID," %.16"ESYM"", data[i]);
fprintf(UFID,"\n");
/* Main time-stepping loop: calls ARKStep to perform the integration, then
prints results. Stops when the final time has been reached */
t = T0;
dTout = (Tf-T0)/Nt;
tout = T0+dTout;
printf(" t ||u||_rms\n");
printf(" -------------------------\n");
printf(" %10.6"FSYM" %10.6"FSYM"\n", t, SUNRsqrt(N_VDotProd(y,y)/N));
for (iout=0; iout<Nt; iout++) {
flag = ARKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL); /* call integrator */
if (check_flag(&flag, "ARKStepEvolve", 1)) break;
printf(" %10.6"FSYM" %10.6"FSYM"\n", t, SUNRsqrt(N_VDotProd(y,y)/N)); /* print solution stats */
if (flag >= 0) { /* successful solve: update output time */
tout += dTout;
tout = (tout > Tf) ? Tf : tout;
} else { /* unsuccessful solve: break */
fprintf(stderr,"Solver failure, stopping integration\n");
break;
}
/* output results to disk */
for (i=0; i<N; i++) fprintf(UFID," %.16"ESYM"", data[i]);
fprintf(UFID,"\n");
}
printf(" -------------------------\n");
fclose(UFID);
/* Print some final statistics */
flag = ARKStepGetNumSteps(arkode_mem, &nst);
check_flag(&flag, "ARKStepGetNumSteps", 1);
flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
check_flag(&flag, "ARKStepGetNumStepAttempts", 1);
flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
check_flag(&flag, "ARKStepGetNumRhsEvals", 1);
flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1);
flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
check_flag(&flag, "ARKStepGetNumErrTestFails", 1);
flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1);
flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1);
flag = ARKStepGetNumLinIters(arkode_mem, &nli);
check_flag(&flag, "ARKStepGetNumLinIters", 1);
flag = ARKStepGetNumJtimesEvals(arkode_mem, &nJv);
check_flag(&flag, "ARKStepGetNumJtimesEvals", 1);
flag = ARKStepGetNumLinConvFails(arkode_mem, &nlcf);
check_flag(&flag, "ARKStepGetNumLinConvFails", 1);
printf("\nFinal Solver Statistics:\n");
printf(" Internal solver steps = %li (attempted = %li)\n", nst, nst_a);
printf(" Total RHS evals: Fe = %li, Fi = %li\n", nfe, nfi);
printf(" Total linear solver setups = %li\n", nsetups);
printf(" Total linear iterations = %li\n", nli);
printf(" Total number of Jacobian-vector products = %li\n", nJv);
printf(" Total number of linear solver convergence failures = %li\n", nlcf);
printf(" Total number of Newton iterations = %li\n", nni);
printf(" Total number of nonlinear solver convergence failures = %li\n", ncfn);
printf(" Total number of error test failures = %li\n", netf);
/* Clean up and return with successful completion */
N_VDestroy(y); /* Free vectors */
free(udata); /* Free user data */
ARKStepFree(&arkode_mem); /* Free integrator memory */
SUNLinSolFree(LS); /* Free linear solver */
return 0;
}
/*--------------------------------
* Functions called by the solver
*--------------------------------*/
/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
UserData udata = (UserData) user_data; /* access problem data */
sunindextype N = udata->N; /* set variable shortcuts */
realtype k = udata->k;
realtype dx = udata->dx;
realtype *Y=NULL, *Ydot=NULL;
realtype c1, c2;
sunindextype i, isource;
Y = N_VGetArrayPointer(y); /* access data arrays */
if (check_flag((void *) Y, "N_VGetArrayPointer", 0)) return 1;
Ydot = N_VGetArrayPointer(ydot);
if (check_flag((void *) Ydot, "N_VGetArrayPointer", 0)) return 1;
N_VConst(0.0, ydot); /* Initialize ydot to zero */
/* iterate over domain, computing all equations */
c1 = k/dx/dx;
c2 = -RCONST(2.0)*k/dx/dx;
isource = N/2;
Ydot[0] = 0.0; /* left boundary condition */
#pragma omp parallel for default(shared) private(i) schedule(static) num_threads(udata->nthreads)
for (i=1; i<N-1; i++)
Ydot[i] = c1*Y[i-1] + c2*Y[i] + c1*Y[i+1];
Ydot[N-1] = 0.0; /* right boundary condition */
Ydot[isource] += 0.01/dx; /* source term */
return 0; /* Return with success */
}
/* Jacobian routine to compute J(t,y) = df/dy. */
static int Jac(N_Vector v, N_Vector Jv, realtype t, N_Vector y,
N_Vector fy, void *user_data, N_Vector tmp)
{
UserData udata = (UserData) user_data; /* variable shortcuts */
sunindextype N = udata->N;
realtype k = udata->k;
realtype dx = udata->dx;
realtype *V=NULL, *JV=NULL;
realtype c1, c2;
sunindextype i;
V = N_VGetArrayPointer(v); /* access data arrays */
if (check_flag((void *) V, "N_VGetArrayPointer", 0)) return 1;
JV = N_VGetArrayPointer(Jv);
if (check_flag((void *) JV, "N_VGetArrayPointer", 0)) return 1;
N_VConst(0.0, Jv); /* initialize Jv product to zero */
/* iterate over domain, computing all Jacobian-vector products */
c1 = k/dx/dx;
c2 = -RCONST(2.0)*k/dx/dx;
JV[0] = 0.0;
#pragma omp parallel for default(shared) private(i) schedule(static) num_threads(udata->nthreads)
for (i=1; i<N-1; i++)
JV[i] = c1*V[i-1] + c2*V[i] + c1*V[i+1];
JV[N-1] = 0.0;
return 0; /* Return with success */
}
/*-------------------------------
* Private helper functions
*-------------------------------*/
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns a flag so check if
flag >= 0
opt == 2 means function allocates memory so check if returned
NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
int *errflag;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && flagvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
/* Check if flag < 0 */
else if (opt == 1) {
errflag = (int *) flagvalue;
if (*errflag < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
funcname, *errflag);
return 1; }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && flagvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
return 0;
}
/*---- end of file ----*/
|