File: ark_heat1D_omp.c

package info (click to toggle)
sundials 4.1.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,244 kB
  • sloc: ansic: 154,216; f90: 5,573; fortran: 5,166; cpp: 4,321; python: 645; makefile: 54; sh: 49
file content (344 lines) | stat: -rw-r--r-- 13,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/*---------------------------------------------------------------
 * Programmer(s): Shelby Lockhart @ LLNL
 *---------------------------------------------------------------
 * Based on the serial code ark_heat1D.c developed by
 * Daniel R. Reynolds @ SMU and parallelized with OpenMP
 *---------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2019, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 *---------------------------------------------------------------
 * Example problem:
 *
 * The following test simulates a simple 1D heat equation,
 *    u_t = k*u_xx + f
 * for t in [0, 10], x in [0, 1], with initial conditions
 *    u(0,x) =  0
 * Dirichlet boundary conditions, i.e.
 *    u_t(t,0) = u_t(t,1) = 0,
 * and a point-source heating term,
 *    f = 1 for x=0.5.
 *
 * The spatial derivatives are computed using second-order
 * centered differences, with the data distributed over N points
 * on a uniform spatial grid.
 *
 * This program solves the problem with either an ERK or DIRK
 * method.  For the DIRK method, we use a Newton iteration with
 * the SUNPCG linear solver, and a user-supplied Jacobian-vector
 * product routine.
 *
 * 100 outputs are printed at equal intervals, and run statistics
 * are printed at the end.
 *---------------------------------------------------------------*/

/* Header files */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <arkode/arkode_arkstep.h>    /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_openmp.h>   /* OpenMP N_Vector types, fcts., macros */
#include <sunlinsol/sunlinsol_pcg.h>  /* access to PCG SUNLinearSolver        */
#include <sundials/sundials_types.h>  /* defs. of realtype, sunindextype, etc */
#include <sundials/sundials_math.h>   /* def. of SUNRsqrt, etc.               */

#ifdef _OPENMP
#include <omp.h>                      /* OpenMP function defs.                */
#endif

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

/* user data structure */
typedef struct {
  sunindextype N;  /* number of intervals      */
  int nthreads;    /* number of OpenMP threads */
  realtype dx;     /* mesh spacing             */
  realtype k;      /* diffusion coefficient    */
} *UserData;

/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(N_Vector v, N_Vector Jv, realtype t, N_Vector y,
               N_Vector fy, void *user_data, N_Vector tmp);

/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);

/* Main Program */
int main(int argc, char *argv[]) {

  /* general problem parameters */
  realtype T0 = RCONST(0.0);   /* initial time */
  realtype Tf = RCONST(1.0);   /* final time */
  int Nt = 10;                 /* total number of output times */
  realtype rtol = 1.e-6;       /* relative tolerance */
  realtype atol = 1.e-10;      /* absolute tolerance */
  UserData udata = NULL;
  realtype *data;
  sunindextype N = 201;        /* spatial mesh size */
  realtype k = 0.5;            /* heat conductivity */
  sunindextype i;

  /* general problem variables */
  int flag;                    /* reusable error-checking flag */
  N_Vector y = NULL;           /* empty vector for storing solution */
  SUNLinearSolver LS = NULL;   /* empty linear solver object */
  void *arkode_mem = NULL;     /* empty ARKStep memory structure */
  FILE *FID, *UFID;
  realtype t, dTout, tout;
  int iout, num_threads;
  long int nst, nst_a, nfe, nfi, nsetups, nli, nJv, nlcf, nni, ncfn, netf;

  /* set the number of threads to use */
  num_threads = 1;                       /* default value */
#ifdef _OPENMP
  num_threads = omp_get_max_threads();   /* overwrite with OMP_NUM_THREADS environment variable */
#endif
  if (argc > 1)                          /* overwrite with command line value, if supplied */
    num_threads = strtol(argv[1], NULL, 0);

  /* allocate and fill udata structure */
  udata = (UserData) malloc(sizeof(*udata));
  udata->N = N;
  udata->k = k;
  udata->dx = RCONST(1.0)/(1.0*N-1.0);     /* mesh spacing */
  udata->nthreads = num_threads;

  /* Initial problem output */
  printf("\n1D Heat PDE test problem:\n");
  printf("  N = %li\n", (long int) udata->N);
  printf("  diffusion coefficient:  k = %"GSYM"\n", udata->k);

  /* Initialize data structures */
  y = N_VNew_OpenMP(N, num_threads);  /* Create OpenMP vector for solution */
  if (check_flag((void *) y, "N_VNew_OpenMP", 0)) return 1;
  N_VConst(0.0, y);                               /* Set initial conditions */
  arkode_mem = ARKStepCreate(NULL, f, T0, y);     /* Create the solver memory */
  if (check_flag((void *) arkode_mem, "ARKStepCreate", 0)) return 1;

  /* Set routines */
  flag = ARKStepSetUserData(arkode_mem, (void *) udata);   /* Pass udata to user functions */
  if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;
  flag = ARKStepSetMaxNumSteps(arkode_mem, 10000);         /* Increase max num steps  */
  if (check_flag(&flag, "ARKStepSetMaxNumSteps", 1)) return 1;
  flag = ARKStepSetPredictorMethod(arkode_mem, 1);         /* Specify maximum-order predictor */
  if (check_flag(&flag, "ARKStepSetPredictorMethod", 1)) return 1;
  flag = ARKStepSStolerances(arkode_mem, rtol, atol);      /* Specify tolerances */
  if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;

  /* Initialize PCG solver -- no preconditioning, with up to N iterations  */
  LS = SUNLinSol_PCG(y, 0, N);
  if (check_flag((void *)LS, "SUNLinSol_PCG", 0)) return 1;

  /* Linear solver interface -- set user-supplied J*v routine (no 'jtsetup' required) */
  flag = ARKStepSetLinearSolver(arkode_mem, LS, NULL);       /* Attach linear solver to ARKStep */
  if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
  flag = ARKStepSetJacTimes(arkode_mem, NULL, Jac);     /* Set the Jacobian routine */
  if (check_flag(&flag, "ARKStepSetJacTimes", 1)) return 1;

  /* Specify linearly implicit RHS, with non-time-dependent Jacobian */
  flag = ARKStepSetLinear(arkode_mem, 0);
  if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;

  /* output mesh to disk */
  FID=fopen("heat_mesh.txt","w");
  for (i=0; i<N; i++)  fprintf(FID,"  %.16"ESYM"\n", udata->dx*i);
  fclose(FID);

  /* Open output stream for results, access data array */
  UFID=fopen("heat1D.txt","w");
  data = N_VGetArrayPointer(y);

  /* output initial condition to disk */
  for (i=0; i<N; i++)  fprintf(UFID," %.16"ESYM"", data[i]);
  fprintf(UFID,"\n");

  /* Main time-stepping loop: calls ARKStep to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  dTout = (Tf-T0)/Nt;
  tout = T0+dTout;
  printf("        t      ||u||_rms\n");
  printf("   -------------------------\n");
  printf("  %10.6"FSYM"  %10.6"FSYM"\n", t, SUNRsqrt(N_VDotProd(y,y)/N));
  for (iout=0; iout<Nt; iout++) {

    flag = ARKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);         /* call integrator */
    if (check_flag(&flag, "ARKStepEvolve", 1)) break;
    printf("  %10.6"FSYM"  %10.6"FSYM"\n", t, SUNRsqrt(N_VDotProd(y,y)/N));   /* print solution stats */
    if (flag >= 0) {                                            /* successful solve: update output time */
      tout += dTout;
      tout = (tout > Tf) ? Tf : tout;
    } else {                                                    /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }

    /* output results to disk */
    for (i=0; i<N; i++)  fprintf(UFID," %.16"ESYM"", data[i]);
    fprintf(UFID,"\n");
  }
  printf("   -------------------------\n");
  fclose(UFID);

  /* Print some final statistics */
  flag = ARKStepGetNumSteps(arkode_mem, &nst);
  check_flag(&flag, "ARKStepGetNumSteps", 1);
  flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
  check_flag(&flag, "ARKStepGetNumStepAttempts", 1);
  flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  check_flag(&flag, "ARKStepGetNumRhsEvals", 1);
  flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
  check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1);
  flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
  check_flag(&flag, "ARKStepGetNumErrTestFails", 1);
  flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
  check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1);
  flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
  check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1);
  flag = ARKStepGetNumLinIters(arkode_mem, &nli);
  check_flag(&flag, "ARKStepGetNumLinIters", 1);
  flag = ARKStepGetNumJtimesEvals(arkode_mem, &nJv);
  check_flag(&flag, "ARKStepGetNumJtimesEvals", 1);
  flag = ARKStepGetNumLinConvFails(arkode_mem, &nlcf);
  check_flag(&flag, "ARKStepGetNumLinConvFails", 1);

  printf("\nFinal Solver Statistics:\n");
  printf("   Internal solver steps = %li (attempted = %li)\n", nst, nst_a);
  printf("   Total RHS evals:  Fe = %li,  Fi = %li\n", nfe, nfi);
  printf("   Total linear solver setups = %li\n", nsetups);
  printf("   Total linear iterations = %li\n", nli);
  printf("   Total number of Jacobian-vector products = %li\n", nJv);
  printf("   Total number of linear solver convergence failures = %li\n", nlcf);
  printf("   Total number of Newton iterations = %li\n", nni);
  printf("   Total number of nonlinear solver convergence failures = %li\n", ncfn);
  printf("   Total number of error test failures = %li\n", netf);

  /* Clean up and return with successful completion */
  N_VDestroy(y);               /* Free vectors */
  free(udata);                 /* Free user data */
  ARKStepFree(&arkode_mem);     /* Free integrator memory */
  SUNLinSolFree(LS);           /* Free linear solver */
  return 0;
}

/*--------------------------------
 * Functions called by the solver
 *--------------------------------*/

/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  UserData udata = (UserData) user_data;    /* access problem data */
  sunindextype N  = udata->N;                   /* set variable shortcuts */
  realtype k  = udata->k;
  realtype dx = udata->dx;
  realtype *Y=NULL, *Ydot=NULL;
  realtype c1, c2;
  sunindextype i, isource;

  Y = N_VGetArrayPointer(y);      /* access data arrays */
  if (check_flag((void *) Y, "N_VGetArrayPointer", 0)) return 1;
  Ydot = N_VGetArrayPointer(ydot);
  if (check_flag((void *) Ydot, "N_VGetArrayPointer", 0)) return 1;
  N_VConst(0.0, ydot);                      /* Initialize ydot to zero */

  /* iterate over domain, computing all equations */
  c1 = k/dx/dx;
  c2 = -RCONST(2.0)*k/dx/dx;
  isource = N/2;
  Ydot[0] = 0.0;                 /* left boundary condition */
#pragma omp parallel for default(shared) private(i) schedule(static) num_threads(udata->nthreads)
  for (i=1; i<N-1; i++)
    Ydot[i] = c1*Y[i-1] + c2*Y[i] + c1*Y[i+1];
  Ydot[N-1] = 0.0;               /* right boundary condition */
  Ydot[isource] += 0.01/dx;      /* source term */

  return 0;                      /* Return with success */
}

/* Jacobian routine to compute J(t,y) = df/dy. */
static int Jac(N_Vector v, N_Vector Jv, realtype t, N_Vector y,
	       N_Vector fy, void *user_data, N_Vector tmp)
{
  UserData udata = (UserData) user_data;     /* variable shortcuts */
  sunindextype N = udata->N;
  realtype k  = udata->k;
  realtype dx = udata->dx;
  realtype *V=NULL, *JV=NULL;
  realtype c1, c2;
  sunindextype i;

  V = N_VGetArrayPointer(v);       /* access data arrays */
  if (check_flag((void *) V, "N_VGetArrayPointer", 0)) return 1;
  JV = N_VGetArrayPointer(Jv);
  if (check_flag((void *) JV, "N_VGetArrayPointer", 0)) return 1;
  N_VConst(0.0, Jv);                         /* initialize Jv product to zero */

  /* iterate over domain, computing all Jacobian-vector products */
  c1 = k/dx/dx;
  c2 = -RCONST(2.0)*k/dx/dx;
  JV[0] = 0.0;
#pragma omp parallel for default(shared) private(i) schedule(static) num_threads(udata->nthreads)
  for (i=1; i<N-1; i++)
    JV[i] = c1*V[i-1] + c2*V[i] + c1*V[i+1];
  JV[N-1] = 0.0;

  return 0;                                  /* Return with success */
}

/*-------------------------------
 * Private helper functions
 *-------------------------------*/

/* Check function return value...
    opt == 0 means SUNDIALS function allocates memory so check if
             returned NULL pointer
    opt == 1 means SUNDIALS function returns a flag so check if
             flag >= 0
    opt == 2 means function allocates memory so check if returned
             NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return 1; }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
	      funcname, *errflag);
      return 1; }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return 1; }

  return 0;
}


/*---- end of file ----*/