1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
#!/usr/bin/env python3
# ------------------------------------------------------------
# Programmer(s): Daniel R. Reynolds @ SMU
# ------------------------------------------------------------
# SUNDIALS Copyright Start
# Copyright (c) 2002-2019, Lawrence Livermore National Security
# and Southern Methodist University.
# All rights reserved.
#
# See the top-level LICENSE and NOTICE files for details.
#
# SPDX-License-Identifier: BSD-3-Clause
# SUNDIALS Copyright End
# ------------------------------------------------------------
# matplotlib-based plotting script for brusselator1D.c example
# imports
import sys
import pylab as plt
import numpy as np
# load mesh data file
mesh = np.loadtxt('bruss_FEM_mesh.txt', dtype=np.double)
# load solution data files
udata = np.loadtxt('bruss_FEM_u.txt', dtype=np.double)
vdata = np.loadtxt('bruss_FEM_v.txt', dtype=np.double)
wdata = np.loadtxt('bruss_FEM_w.txt', dtype=np.double)
# determine number of time steps, mesh size
nt,nx = np.shape(udata)
# determine min/max values
umin = 0.9*udata.min()
umax = 1.1*udata.max()
vmin = 0.9*vdata.min()
vmax = 1.1*vdata.max()
wmin = 0.9*wdata.min()
wmax = 1.1*wdata.max()
minval = np.array([umin, vmin, wmin]).min()
maxval = np.array([umax, vmax, wmax]).max()
# plot the mesh
plt.figure(1)
plt.plot(mesh,0.0*mesh,'o')
plt.xlabel('x')
plt.title('FEM mesh')
plt.savefig('brusselator1D_FEM_mesh.png')
# generate plots of results
for tstep in range(nt):
# set string constants for output plots, current time, mesh size
pname = 'brusselator1D_FEM.' + repr(tstep).zfill(3) + '.png'
tstr = repr(tstep)
nxstr = repr(nx)
# plot current solution and save to disk
plt.figure(1)
plt.plot(mesh,udata[tstep,:],label="u")
plt.plot(mesh,vdata[tstep,:],label="v")
plt.plot(mesh,wdata[tstep,:],label="w")
plt.xlabel('x')
plt.ylabel('solution')
plt.title('Solutions at output ' + tstr + ', mesh = ' + nxstr)
plt.axis((0.0, 1.0, minval, maxval))
plt.grid()
plt.legend(loc='upper right', shadow=True)
plt.savefig(pname)
plt.close()
##### end of script #####
|