1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
#!/usr/bin/env python
# ----------------------------------------------------------------
# Programmer(s): Daniel R. Reynolds @ SMU
# ----------------------------------------------------------------
# SUNDIALS Copyright Start
# Copyright (c) 2002-2022, Lawrence Livermore National Security
# and Southern Methodist University.
# All rights reserved.
#
# See the top-level LICENSE and NOTICE files for details.
#
# SPDX-License-Identifier: BSD-3-Clause
# SUNDIALS Copyright End
# ----------------------------------------------------------------
# matplotlib-based plotting script
# ----------------------------------------------------------------
# imports
import glob
import sys
import pylab as plt
import numpy as np
# load mesh data file
mesh = np.loadtxt('mesh.txt', dtype=np.double)
# load output time file
times = np.loadtxt('t.000000.txt', dtype=np.double)
# load solution data files
ufiles = glob.glob('u.' + ('[0-9]'*6) + '.txt'); ufiles.sort()
vfiles = glob.glob('v.' + ('[0-9]'*6) + '.txt'); vfiles.sort()
wfiles = glob.glob('w.' + ('[0-9]'*6) + '.txt'); wfiles.sort()
udata = np.loadtxt(ufiles[0], dtype=np.double)
vdata = np.loadtxt(vfiles[0], dtype=np.double)
wdata = np.loadtxt(wfiles[0], dtype=np.double)
for idx in range(1,len(ufiles)):
udata = np.hstack((udata, np.loadtxt(ufiles[idx], dtype=np.double)))
vdata = np.hstack((vdata, np.loadtxt(vfiles[idx], dtype=np.double)))
wdata = np.hstack((wdata, np.loadtxt(wfiles[idx], dtype=np.double)))
# determine number of time steps, mesh size
nt,nx = np.shape(udata)
# determine min/max values
umin = 0.9*udata.min()
umax = 1.1*udata.max()
vmin = 0.9*vdata.min()
vmax = 1.1*vdata.max()
wmin = 0.9*wdata.min()
wmax = 1.1*wdata.max()
xmax = mesh.max()
minval = np.array([umin, vmin, wmin]).min()
maxval = np.array([umax, vmax, wmax]).max()
# generate plots of results
for tstep in range(nt):
# set string constants for output plots, current time, mesh size
pname = 'solution.' + repr(tstep).zfill(3) + '.png'
tstr = repr(tstep)
nxstr = repr(nx)
# plot current solution and save to disk
plt.figure(1)
plt.plot(mesh,udata[tstep,:],label="u")
plt.plot(mesh,vdata[tstep,:],label="v")
plt.plot(mesh,wdata[tstep,:],label="w")
plt.xlabel('x')
plt.ylabel('solution')
plt.title('Solutions at output ' + tstr + ', mesh = ' + nxstr)
plt.axis((0.0, xmax, minval, maxval))
plt.grid()
plt.legend(loc='upper right', shadow=True)
plt.savefig(pname)
plt.close()
# set string constants for output plots, current time, mesh size
pname = 'solution_at_x0.png'
xstr = repr(mesh[0])
# plot current solution and save to disk
plt.figure(1)
plt.plot(times,udata[:,0],label="u")
plt.plot(times,vdata[:,0],label="v")
plt.plot(times,wdata[:,0],label="w")
plt.xlabel('t')
plt.ylabel('solution')
plt.title('Solutions at output at x = '+xstr)
plt.axis((times[0], times[-1], minval, maxval))
plt.grid()
plt.legend(loc='upper right', shadow=True)
plt.savefig(pname)
plt.close()
##### end of script #####
|