File: ark_heat2D_xbraid.cpp

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (1649 lines) | stat: -rw-r--r-- 51,843 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
/* -----------------------------------------------------------------------------
 * Programmer(s): David J. Gardner @ LLNL
 * -----------------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------------------
 * Example problem:
 *
 * The following test simulates a simple anisotropic 2D heat equation,
 *
 *   u_t = kx u_xx + ky u_yy + b,
 *
 * for t in [0, 1] and (x,y) in [0, 1]^2, with initial conditions
 *
 *   u(0,x,y) = sin^2(pi x) sin^2(pi y),
 *
 * stationary boundary conditions
 *
 *   u_t(t,0,y) = u_t(t,1,y) = u_t(t,x,0) = u_t(t,x,1) = 0,
 *
 * and the heat source
 *
 *   b(t,x,y) = -2 pi sin^2(pi x) sin^2(pi y) sin(pi t) cos(pi t)
 *              - kx 2 pi^2 (cos^2(pi x) - sin^2(pi x)) sin^2(pi y) cos^2(pi t)
 *              - ky 2 pi^2 (cos^2(pi y) - sin^2(pi y)) sin^2(pi x) cos^2(pi t).
 *
 * Under this setup, the problem has the analytical solution
 *
 *    u(t,x,y) = sin^2(pi x) sin^2(pi y) cos^2(pi t).
 *
 * The spatial derivatives are computed using second-order centered differences,
 * with the data distributed over nx * ny points on a uniform spatial grid. The
 * problem is solved using the XBraid multigrid reduction in time library paired
 * with a diagonally implicit Runge-Kutta method from the ARKODE ARKStep module
 * using an inexact Newton method paired with the PCG or SPGMR linear solver.
 * Several command line options are available to change the problem parameters
 * and ARKStep settings. Use the flag --help for more information.
 * ---------------------------------------------------------------------------*/

#include <cstdio>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <limits>
#include <chrono>
#include <cmath>

#include "arkode/arkode_arkstep.h"     // access to ARKStep
#include "nvector/nvector_serial.h"    // access to the serial N_Vector
#include "sunlinsol/sunlinsol_pcg.h"   // access to PCG SUNLinearSolver
#include "sunlinsol/sunlinsol_spgmr.h" // access to SPGMR SUNLinearSolver
#include "mpi.h"                       // MPI header file
#include "braid.h"                     // access to XBraid
#include "arkode/arkode_xbraid.h"      // access to ARKStep + XBraid interface


// Macros for problem constants
#define PI    RCONST(3.141592653589793238462643383279502884197169)
#define ZERO  RCONST(0.0)
#define ONE   RCONST(1.0)
#define TWO   RCONST(2.0)
#define EIGHT RCONST(8.0)

// Macro to access (x,y) location in 1D NVector array
#define IDX(x,y,n) ((n)*(y)+(x))

using namespace std;

// -----------------------------------------------------------------------------
// User data structure
// -----------------------------------------------------------------------------

struct UserData
{
  // SUNDIALS simulation context
  SUNContext ctx;

  // Diffusion coefficients in the x and y directions
  realtype kx;
  realtype ky;

  // Enable/disable forcing
  bool forcing;

  // Final time
  realtype tf;

  // Upper bounds in x and y directions
  realtype xu;
  realtype yu;

  // Number of nodes in the x and y directions
  sunindextype nx;
  sunindextype ny;

  // Total number of nodes
  sunindextype nodes;

  // Mesh spacing in the x and y directions
  realtype dx;
  realtype dy;

  // MPI variables
  MPI_Comm comm_w; // world communicator

  int nprocs_w; // total number of MPI processes in Comm world

  int myid_w; // process ID in space and time

  // Integrator settings
  realtype rtol;        // relative tolerance
  realtype atol;        // absolute tolerance
  int      order;       // ARKode method order
  bool     linear;      // enable/disable linearly implicit option
  bool     diagnostics; // output diagnostics

  // Linear solver and preconditioner settings
  bool     pcg;       // use PCG (true) or GMRES (false)
  bool     prec;      // preconditioner on/off
  bool     lsinfo;    // output residual history
  int      liniters;  // number of linear iterations
  int      msbp;      // max number of steps between preconditioner setups
  realtype epslin;    // linear solver tolerance factor

  // Inverse of Jacobian diagonal for preconditioner
  N_Vector d;

  // Ouput variables
  int      output; // output level
  int      nout;   // number of output times
  ofstream uout;   // output file stream
  ofstream eout;   // error file stream
  N_Vector e;      // error vector

  // Timing variables
  bool   timing;     // print timings
  double evolvetime;
  double rhstime;
  double psetuptime;
  double psolvetime;
  double accesstime;

  // XBraid settings
  realtype x_tol;           // Xbraid stopping tolerance
  int      x_nt;            // number of fine grid time points
  int      x_skip;          // skip all work on first down cycle
  int      x_max_levels;    // max number of levels
  int      x_min_coarse;    // min possible coarse gird size
  int      x_nrelax;        // number of CF relaxation sweeps on all levels
  int      x_nrelax0;       // number of CF relaxation sweeps on level 0
  int      x_tnorm;         // temporal stopping norm
  int      x_cfactor;       // coarsening factor
  int      x_cfactor0;      // coarsening factor on level 0
  int      x_max_iter;      // max number of interations
  int      x_storage;       // Full storage on levels >= storage
  int      x_print_level;   // xbraid output level
  int      x_access_level;  // access level
  int      x_rfactor_limit; // refinement factor limit
  int      x_rfactor_fail;  // refinement factor on solver failure
  int      x_max_refine;    // max number of refinements
  bool     x_fmg;           // true = FMG cycle, false = V cycle
  bool     x_refine;        // enable refinement with XBraid
  bool     x_initseq;       // initialize with sequential solution
  bool     x_reltol;        // use relative tolerance
  bool     x_init_u0;       // initialize solution to initial condition
};

// -----------------------------------------------------------------------------
// Functions provided to XBraid
// -----------------------------------------------------------------------------

int MyInit(braid_App app, realtype t, braid_Vector *u_ptr);
int MyAccess(braid_App app, braid_Vector u, braid_AccessStatus astatus);

// -----------------------------------------------------------------------------
// Functions provided to the SUNDIALS integrator
// -----------------------------------------------------------------------------

// ODE right hand side function
static int f(realtype t, N_Vector u, N_Vector f, void *user_data);

// Preconditioner setup and solve functions
static int PSetup(realtype t, N_Vector u, N_Vector f, booleantype jok,
                  booleantype *jcurPtr, realtype gamma, void *user_data);

static int PSolve(realtype t, N_Vector u, N_Vector f, N_Vector r,
                  N_Vector z, realtype gamma, realtype delta, int lr,
                  void *user_data);

// -----------------------------------------------------------------------------
// UserData and input functions
// -----------------------------------------------------------------------------

// Set the default values in the UserData structure
static int InitUserData(UserData *udata, SUNContext ctx);

// Free memory allocated within UserData
static int FreeUserData(UserData *udata);

// Read the command line inputs and set UserData values
static int ReadInputs(int *argc, char ***argv, UserData *udata, bool outproc);

// -----------------------------------------------------------------------------
// Output and utility functions
// -----------------------------------------------------------------------------

// Compute the true solution
static int Solution(realtype t, N_Vector u, UserData *udata);

// Compute the solution error solution
static int SolutionError(realtype t, N_Vector u,  N_Vector e, UserData *udata);

// Print the command line options
static void InputHelp();

// Print some UserData information
static int PrintUserData(UserData *udata);

// Print integration statistics
static int OutputStats(void *arkode_mem, UserData *udata);

// Print integration timing
static int OutputTiming(UserData *udata);

// Check function return values
static int check_flag(void *flagvalue, const string funcname, int opt);

// -----------------------------------------------------------------------------
// Main Program
// -----------------------------------------------------------------------------

int main(int argc, char* argv[])
{
  int flag;                   // reusable error-checking flag
  UserData *udata    = NULL;  // user data structure
  N_Vector u         = NULL;  // vector for storing solution
  SUNLinearSolver LS = NULL;  // linear solver memory structure
  void *arkode_mem   = NULL;  // ARKODE memory structure
  FILE *diagfp       = NULL;  // diagnostics output file
  braid_Core core    = NULL;  // XBraid memory structure
  braid_App app      = NULL;  // ARKode + XBraid interface structure

  // Timing variables
  chrono::time_point<chrono::steady_clock> t1;
  chrono::time_point<chrono::steady_clock> t2;

  // MPI variables
  MPI_Comm comm_w = MPI_COMM_WORLD; // MPI communicator
  int myid;                         // MPI process ID

  // Initialize MPI
  flag = MPI_Init(&argc, &argv);
  if (check_flag(&flag, "MPI_Init", 1)) return 1;

  flag = MPI_Comm_rank(comm_w, &myid);
  if (check_flag(&flag, "MPI_Comm_rank", 1)) return 1;

  // Create the SUNDIALS context object for this simulation
  SUNContext ctx;
  flag = SUNContext_Create(NULL, &ctx);
  if (check_flag(&flag, "SUNContext_Create", 1)) return 1;

  // Set output process flag
  bool outproc = (myid == 0);

  // ---------------
  // Setup UserData
  // ---------------

  // Allocate and initialize user data structure with default values. The
  // defaults may be overwritten by command line inputs in ReadInputs below.
  udata = new UserData;
  flag = InitUserData(udata, ctx);
  if (check_flag(&flag, "InitUserData", 1)) return 1;

  // Parse command line inputs
  flag = ReadInputs(&argc, &argv, udata, outproc);
  if (flag != 0) return 1;

  // Number of processes
  int nprocs_w;
  flag = MPI_Comm_size(comm_w, &nprocs_w);
  if (check_flag(&flag, "MPI_Comm_size", 1)) return 1;

  // Set communicator and number of processes in user data
  udata->comm_w   = comm_w;
  udata->nprocs_w = nprocs_w;
  udata->myid_w   = myid;

  // Output problem setup/options
  if (outproc)
  {
    flag = PrintUserData(udata);
    if (check_flag(&flag, "PrintUserData", 1)) return 1;
  }

  // Open diagnostics output file
  if (udata->diagnostics || udata->lsinfo)
  {
    stringstream fname;
    fname << "diagnostics." << setfill('0') << setw(5) << udata->myid_w
          << ".txt";

    const std::string tmp = fname.str();
    diagfp = fopen(tmp.c_str(), "w");
    if (check_flag((void *) diagfp, "fopen", 0)) return 1;
  }

  // ----------------------
  // Create serial vectors
  // ----------------------

  // Create vector for solution
  u = N_VNew_Serial(udata->nodes, ctx);
  if (check_flag((void *) u, "N_VNew_Parallel", 0)) return 1;

  // Set initial condition
  flag = Solution(ZERO, u, udata);
  if (check_flag(&flag, "Solution", 1)) return 1;

  // Create vector for error
  udata->e = N_VClone(u);
  if (check_flag((void *) (udata->e), "N_VClone", 0)) return 1;

  // ---------------------
  // Create linear solver
  // ---------------------

  // Create linear solver
  int prectype = (udata->prec) ? SUN_PREC_RIGHT : SUN_PREC_NONE;

  if (udata->pcg)
  {
    LS = SUNLinSol_PCG(u, prectype, udata->liniters, ctx);
    if (check_flag((void *) LS, "SUNLinSol_PCG", 0)) return 1;

    if (udata->lsinfo)
    {
      flag = SUNLinSolSetPrintLevel_PCG(LS, 1);
      if (check_flag(&flag, "SUNLinSolSetPrintLevel_PCG", 1)) return(1);

      flag = SUNLinSolSetInfoFile_PCG(LS, diagfp);
      if (check_flag(&flag, "SUNLinSolSetInfoFile_PCG", 1)) return(1);
    }
  }
  else
  {
    LS = SUNLinSol_SPGMR(u, prectype, udata->liniters, ctx);
    if (check_flag((void *) LS, "SUNLinSol_SPGMR", 0)) return 1;

    if (udata->lsinfo)
    {
      flag = SUNLinSolSetPrintLevel_SPGMR(LS, 1);
      if (check_flag(&flag, "SUNLinSolSetPrintLevel_SPGMR", 1)) return(1);

      flag = SUNLinSolSetInfoFile_SPGMR(LS, diagfp);
      if (check_flag(&flag, "SUNLinSolSetInfoFile_SPGMR", 1)) return(1);
    }
  }

  // Allocate preconditioner workspace
  if (udata->prec)
  {
    udata->d = N_VClone(u);
    if (check_flag((void *) (udata->d), "N_VClone", 0)) return 1;
  }

  // --------------
  // Setup ARKStep
  // --------------

  // Create integrator
  arkode_mem = ARKStepCreate(NULL, f, ZERO, u, ctx);
  if (check_flag((void *) arkode_mem, "ARKStepCreate", 0)) return 1;

  // Specify tolerances
  flag = ARKStepSStolerances(arkode_mem, udata->rtol, udata->atol);
  if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;

  // Attach user data
  flag = ARKStepSetUserData(arkode_mem, (void *) udata);
  if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;

  // Attach linear solver
  flag = ARKStepSetLinearSolver(arkode_mem, LS, NULL);
  if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;

  if (udata->prec)
  {
    // Attach preconditioner
    flag = ARKStepSetPreconditioner(arkode_mem, PSetup, PSolve);
    if (check_flag(&flag, "ARKStepSetPreconditioner", 1)) return 1;

    // Set linear solver setup frequency (update preconditioner)
    flag = ARKStepSetLSetupFrequency(arkode_mem, udata->msbp);
    if (check_flag(&flag, "ARKStepSetLSetupFrequency", 1)) return 1;
  }

  // Set linear solver tolerance factor
  flag = ARKStepSetEpsLin(arkode_mem, udata->epslin);
  if (check_flag(&flag, "ARKStepSetEpsLin", 1)) return 1;

  // Select method order
  if (udata->order > 1)
  {
    // Use an ARKode provided table
    flag = ARKStepSetOrder(arkode_mem, udata->order);
    if (check_flag(&flag, "ARKStepSetOrder", 1)) return 1;
  }
  else
  {
    // Use implicit Euler (XBraid temporal refinement must be disabled)
    realtype c[1], A[1], b[1];
    ARKodeButcherTable B = NULL;

    // Create implicit Euler Butcher table
    c[0] = A[0] = b[0] = ONE;
    B = ARKodeButcherTable_Create(1, 1, 0, c, A, b, NULL);
    if (check_flag((void*) B, "ARKodeButcherTable_Create", 0)) return 1;

    // Attach the Butcher table
    flag = ARKStepSetTables(arkode_mem, 1, 0, B, NULL);
    if (check_flag(&flag, "ARKStepSetTables", 1)) return 1;

    // Free the Butcher table
    ARKodeButcherTable_Free(B);
  }

  // Specify linearly implicit non-time-dependent RHS
  if (udata->linear)
  {
    flag = ARKStepSetLinear(arkode_mem, 0);
    if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;
  }

  // Set adaptive stepping (XBraid with temporal refinement) options
  if (udata->x_refine)
  {
    // Use I controller
    flag = ARKStepSetAdaptivityMethod(arkode_mem, ARK_ADAPT_I, 1, 0, NULL);
    if (check_flag(&flag, "ARKStepSetAdaptivityMethod", 1)) return 1;

    // Set the step size reduction factor limit (1 / refinement factor limit)
    flag = ARKStepSetMinReduction(arkode_mem, ONE / udata->x_rfactor_limit);
    if (check_flag(&flag, "ARKStepSetMinReduction", 1)) return 1;

    // Set the failed solve step size reduction factor (1 / refinement factor)
    flag = ARKStepSetMaxCFailGrowth(arkode_mem, ONE / udata->x_rfactor_fail);
    if (check_flag(&flag, "ARKStepSetMaxCFailGrowth", 1)) return 1;
  }

  // Set diagnostics output file
  if (udata->diagnostics)
  {
    flag = ARKStepSetDiagnostics(arkode_mem, diagfp);
    if (check_flag(&flag, "ARKStepSetDiagnostics", 1)) return 1;
  }

  // ------------------------
  // Create XBraid interface
  // ------------------------

  // Create the ARKStep + XBraid interface
  flag = ARKBraid_Create(arkode_mem, &app);
  if (check_flag(&flag, "ARKBraid_Create", 1)) return 1;

  // Override the default initialization function
  flag = ARKBraid_SetInitFn(app, MyInit);
  if (check_flag(&flag, "ARKBraid_SetInitFn", 1)) return 1;

  // Override the default access function
  flag = ARKBraid_SetAccessFn(app, MyAccess);
  if (check_flag(&flag, "ARKBraid_SetAccesFn", 1)) return 1;

  // Initialize the ARKStep + XBraid interface
  flag = ARKBraid_BraidInit(comm_w, comm_w, ZERO, udata->tf,
                            udata->x_nt, app, &core);
  if (check_flag(&flag, "ARKBraid_BraidInit", 1)) return 1;

  // ----------------------
  // Set XBraid parameters
  // ----------------------

  flag = braid_SetTemporalNorm(core, udata->x_tnorm);
  if (check_flag(&flag, "braid_SetTemporalNorm", 1)) return 1;

  if (udata->x_reltol)
  {
    flag = braid_SetRelTol(core, udata->x_tol);
    if (check_flag(&flag, "braid_SetRelTol", 1)) return 1;
  }
  else
  {
    // Since we are using the Euclidean 2-norm in space, scale the tolerance so
    // it approximates to L2-norm.
    realtype tolfactor;
    if (udata->x_tnorm == 3)
    {
      // Infinity norm in time
      tolfactor = sqrt(udata->nx * udata->ny);
    }
    else
    {
      // 2-norm in time
      tolfactor = sqrt(udata->nx * udata->nx * udata->x_nt);
    }
    flag = braid_SetAbsTol(core, udata->x_tol * tolfactor);
    if (check_flag(&flag, "braid_SetAbsTol", 1)) return 1;
  }

  flag = braid_SetSkip(core, udata->x_skip);
  if (check_flag(&flag, "braid_SetSkip", 1)) return 1;

  flag = braid_SetMaxLevels( core, udata->x_max_levels );
  if (check_flag(&flag, "braid_SetMaxLevels", 1)) return 1;

  flag = braid_SetMinCoarse( core, udata->x_min_coarse );
  if (check_flag(&flag, "braid_SetMinCoarse", 1)) return 1;

  flag = braid_SetNRelax(core, -1, udata->x_nrelax);
  if (check_flag(&flag, "braid_SetNRelax", 1)) return 1;

  if (udata->x_nrelax0 > -1)
  {
    flag = braid_SetNRelax(core,  0, udata->x_nrelax0);
    if (check_flag(&flag, "braid_SetNRelax", 1)) return 1;
  }

  flag = braid_SetCFactor(core, -1, udata->x_cfactor);
  if (check_flag(&flag, "braid_SetCFactor", 1)) return 1;

  if (udata->x_cfactor0 > 0)
  {
    flag = braid_SetCFactor(core,  0, udata->x_cfactor0);
    if (check_flag(&flag, "braid_SetCFactor", 1)) return 1;
  }

  flag = braid_SetMaxIter(core, udata->x_max_iter);
  if (check_flag(&flag, "braid_SetMaxIter", 1)) return 1;

  if (udata->x_fmg)
  {
    // Use F-cycles
    flag = braid_SetFMG(core);
    if (check_flag(&flag, "braid_SetFMG", 1)) return 1;
  }

  flag = braid_SetPrintLevel(core, udata->x_print_level);
  if (check_flag(&flag, "braid_SetPrintLevel", 1)) return 1;

  flag = braid_SetAccessLevel(core, udata->x_access_level);
  if (check_flag(&flag, "braid_SetAccessLevel", 1)) return 1;

  if (udata->x_initseq) {
    flag =  braid_SetSeqSoln(core, 1);
    if (check_flag(&flag, "braid_SetSeqSoln", 1)) return 1;
  }

  // Temporal refinement
  if (udata->x_refine)
  {
    // Enable refinement
    flag = braid_SetRefine(core, 1);
    if (check_flag(&flag, "braid_SetRefine", 1)) return 1;

    // Set maximum number of refinements
    flag = braid_SetMaxRefinements(core, udata->x_max_refine);
    if (check_flag(&flag, "braid_SetMaxRefinements", 1)) return 1;

    // Use F-cycles
    flag = braid_SetFMG(core);
    if (check_flag(&flag, "braid_SetFMG", 1)) return 1;

    // Increase max levels after refinement
    flag = braid_SetIncrMaxLevels(core);
    if (check_flag(&flag, "braid_SetIncrMaxLevels", 1)) return 1;
  }

  // -----------------
  // "Loop" over time
  // -----------------

  // Start timer
  t1 = chrono::steady_clock::now();

  // Evolve in time
  flag = braid_Drive(core);
  if (check_flag(&flag, "braid_Drive", 1)) return 1;

  // Stop timer
  t2 = chrono::steady_clock::now();

  // Update timer
  udata->evolvetime += chrono::duration<double>(t2 - t1).count();

  // --------------
  // Final outputs
  // --------------

  // Print final integrator stats
  if (udata->output > 0)
  {
    if (outproc) cout << "Final max integrator statistics:" << endl;
    flag = OutputStats(arkode_mem, udata);
    if (check_flag(&flag, "OutputStats", 1)) return 1;
  }

  // Print timing
  if (udata->timing)
  {
    flag = OutputTiming(udata);
    if (check_flag(&flag, "OutputTiming", 1)) return 1;
  }

  // --------------------
  // Clean up and return
  // --------------------

  if (udata->diagnostics || udata->lsinfo) fclose(diagfp);

  ARKStepFree(&arkode_mem);  // Free integrator memory
  SUNLinSolFree(LS);         // Free linear solver
  N_VDestroy(u);             // Free vectors
  FreeUserData(udata);       // Free user data
  delete udata;
  braid_Destroy(core);       // Free braid memory
  ARKBraid_Free(&app);       // Free interface memory
  SUNContext_Free(&ctx);     // Free context
  flag = MPI_Finalize();     // Finalize MPI

  return 0;
}

// -----------------------------------------------------------------------------
// Functions provided to XBraid
// -----------------------------------------------------------------------------


// Create and initialize vectors
int MyInit(braid_App app, realtype t, braid_Vector *u_ptr)
{
  int      flag;
  void     *user_data;
  UserData *udata;

  // Get user data pointer
  ARKBraid_GetUserData(app, &user_data);
  udata = static_cast<UserData*>(user_data);

  // Create new vector
  N_Vector y = N_VNew_Serial(udata->nodes, udata->ctx);
  flag = SUNBraidVector_New(y, u_ptr);
  if (flag != 0) return 1;

  // Set initial solution at all time points
  if (t == ZERO)
  {
    flag = Solution(t, y, udata);
    if (flag != 0) return 1;
  }
  else
  {
    N_VConst(ZERO, y);
  }

  return 0;
}

// Access XBraid and current vector
int MyAccess(braid_App app, braid_Vector u, braid_AccessStatus astatus)
{
  int       flag;    // return flag
  int       iter;    // current iteration number
  int       level;   // current level
  int       done;    // has XBraid finished
  realtype  t;       // current time
  void     *user_data;
  UserData *udata;

  // Timing variables
  chrono::time_point<chrono::steady_clock> t1;
  chrono::time_point<chrono::steady_clock> t2;

  // Start timer
  t1 = chrono::steady_clock::now();

  // Get user data pointer
  ARKBraid_GetUserData(app, &user_data);
  udata = static_cast<UserData*>(user_data);

  // Get current time, iteration, level, and status
  braid_AccessStatusGetTILD(astatus, &t, &iter, &level, &done);

  // Output on fine level when XBraid has finished
  if (level == 0 && done)
  {
    // Get current time index and number of fine grid points
    int index;
    int ntpts;
    braid_AccessStatusGetTIndex(astatus, &index);
    braid_AccessStatusGetNTPoints(astatus, &ntpts);

    // Extract NVector
    N_Vector y = NULL;
    flag = SUNBraidVector_GetNVector(u, &y);
    if (flag != 0) return 1;

    // Write visualization files
    if (udata->output == 2)
    {
      // Get output frequency (ensure the final time is output)
      int qout = ntpts / udata->nout;
      int rout = ntpts % udata->nout;
      int nout = (rout > 0) ? udata->nout + 2 : udata->nout + 1;

      // Output problem information
      if (index == 0)
      {
        ofstream dout;
        dout.open("heat2d_info.txt");
        dout <<  "xu  " << udata->xu << endl;
        dout <<  "yu  " << udata->yu << endl;
        dout <<  "nx  " << udata->nx << endl;
        dout <<  "ny  " << udata->ny << endl;
        dout <<  "nt  " << nout      << endl;
        dout.close();
      }

      // Output solution and error
      if (!(index % qout) || index == ntpts)
      {
        // Open output streams
        stringstream fname;
        fname << "heat2d_solution."
              << setfill('0') << setw(6) << index / qout << ".txt";

        udata->uout.open(fname.str());
        udata->uout << scientific;
        udata->uout << setprecision(numeric_limits<realtype>::digits10);

        fname.str("");
        fname.clear();
        fname << "heat2d_error."
              << setfill('0') << setw(6) << index / qout << ".txt";

        udata->eout.open(fname.str());
        udata->eout << scientific;
        udata->eout << setprecision(numeric_limits<realtype>::digits10);

        // Compute the error
        flag = SolutionError(t, y, udata->e, udata);
        if (check_flag(&flag, "SolutionError", 1)) return 1;

        // Output solution to disk
        realtype *yarray = N_VGetArrayPointer(y);
        if (check_flag((void *) yarray, "N_VGetArrayPointer", 0)) return -1;

        udata->uout << t << " ";
        for (sunindextype i = 0; i < udata->nodes; i++)
        {
          udata->uout << yarray[i] << " ";
        }
        udata->uout << endl;

        // Output error to disk
        realtype *earray = N_VGetArrayPointer(udata->e);
        if (check_flag((void *) earray, "N_VGetArrayPointer", 0)) return -1;

        udata->eout << t << " ";
        for (sunindextype i = 0; i < udata->nodes; i++)
        {
          udata->eout << earray[i] << " ";
        }
        udata->eout << endl;

        // Close output streams
        udata->uout.close();
        udata->eout.close();
      }
    }

    // Output final error
    if (index == ntpts)
    {
      // Compute the max error
      flag = SolutionError(t, y, udata->e, udata);
      if (check_flag(&flag, "SolutionError", 1)) return 1;

      realtype maxerr = N_VMaxNorm(udata->e);

      cout << scientific;
      cout << setprecision(numeric_limits<realtype>::digits10);
      cout << "  Max error = " << maxerr << endl << endl;
    }
  }

  // Stop timer
  t2 = chrono::steady_clock::now();

  // Update timing
  udata->accesstime += chrono::duration<double>(t2 - t1).count();

  return 0;
}

// -----------------------------------------------------------------------------
// Functions called by the integrator
// -----------------------------------------------------------------------------

// f routine to compute the ODE RHS function f(t,y).
static int f(realtype t, N_Vector u, N_Vector f, void *user_data)
{
  // Timing variables
  chrono::time_point<chrono::steady_clock> t1;
  chrono::time_point<chrono::steady_clock> t2;

  // Start timer
  t1 = chrono::steady_clock::now();

  // Access problem data
  UserData *udata = (UserData *) user_data;

  // Shortcuts to number of nodes
  sunindextype nx = udata->nx;
  sunindextype ny = udata->ny;

  // Constants for computing diffusion term
  realtype cx = udata->kx / (udata->dx * udata->dx);
  realtype cy = udata->ky / (udata->dy * udata->dy);
  realtype cc = -TWO * (cx + cy);

  // Access data arrays
  realtype *uarray = N_VGetArrayPointer(u);
  if (check_flag((void *) uarray, "N_VGetArrayPointer", 0)) return -1;

  realtype *farray = N_VGetArrayPointer(f);
  if (check_flag((void *) farray, "N_VGetArrayPointer", 0)) return -1;

  // Initialize rhs vector to zero (handles boundary conditions)
  N_VConst(ZERO, f);

  // Iterate over domain interior and compute rhs forcing term
  if (udata->forcing)
  {
    realtype x, y;
    realtype sin_sqr_x, sin_sqr_y;
    realtype cos_sqr_x, cos_sqr_y;

    realtype bx = (udata->kx) * TWO * PI * PI;
    realtype by = (udata->ky) * TWO * PI * PI;

    realtype sin_t_cos_t = sin(PI * t) * cos(PI * t);
    realtype cos_sqr_t   = cos(PI * t) * cos(PI * t);

    for (sunindextype j = 1; j < ny - 1; j++)
    {
      for (sunindextype i = 1; i < nx - 1; i++)
      {
        x  = i * udata->dx;
        y  = j * udata->dy;

        sin_sqr_x = sin(PI * x) * sin(PI * x);
        sin_sqr_y = sin(PI * y) * sin(PI * y);

        cos_sqr_x = cos(PI * x) * cos(PI * x);
        cos_sqr_y = cos(PI * y) * cos(PI * y);

        farray[IDX(i,j,nx)] =
          -TWO * PI * sin_sqr_x * sin_sqr_y * sin_t_cos_t
          -bx * (cos_sqr_x - sin_sqr_x) * sin_sqr_y * cos_sqr_t
          -by * (cos_sqr_y - sin_sqr_y) * sin_sqr_x * cos_sqr_t;
      }
    }
  }

  // Iterate over domain interior and add rhs diffusion term
  for (sunindextype j = 1; j < ny - 1; j++)
  {
    for (sunindextype i = 1; i < nx - 1; i++)
    {
      farray[IDX(i,j,nx)] +=
        cc * uarray[IDX(i,j,nx)]
        + cx * (uarray[IDX(i-1,j,nx)] + uarray[IDX(i+1,j,nx)])
        + cy * (uarray[IDX(i,j-1,nx)] + uarray[IDX(i,j+1,nx)]);
    }
  }

  // Stop timer
  t2 = chrono::steady_clock::now();

  // Update timer
  udata->rhstime += chrono::duration<double>(t2 - t1).count();

  // Return success
  return 0;
}

// Preconditioner setup routine
static int PSetup(realtype t, N_Vector u, N_Vector f, booleantype jok,
                  booleantype *jcurPtr, realtype gamma, void *user_data)
{
  // Timing variables
  chrono::time_point<chrono::steady_clock> t1;
  chrono::time_point<chrono::steady_clock> t2;

  // Start timer
  t1 = chrono::steady_clock::now();

  // Access problem data
  UserData *udata = (UserData *) user_data;

  // Access data array
  realtype *diag = N_VGetArrayPointer(udata->d);
  if (check_flag((void *) diag, "N_VGetArrayPointer", 0)) return -1;

  // Constants for computing diffusion
  realtype cx = udata->kx / (udata->dx * udata->dx);
  realtype cy = udata->ky / (udata->dy * udata->dy);
  realtype cc = -TWO * (cx + cy);

  // Set all entries of d to the inverse diagonal values of interior
  // (since boundary RHS is 0, set boundary diagonals to the same)
  realtype c = ONE / (ONE - gamma * cc);
  N_VConst(c, udata->d);

  // Stop timer
  t2 = chrono::steady_clock::now();

  // Update timer
  udata->psetuptime += chrono::duration<double>(t2 - t1).count();

  // Return success
  return 0;
}

// Preconditioner solve routine for Pz = r
static int PSolve(realtype t, N_Vector u, N_Vector f, N_Vector r,
                  N_Vector z, realtype gamma, realtype delta, int lr,
                  void *user_data)
{
  // Timing variables
  chrono::time_point<chrono::steady_clock> t1;
  chrono::time_point<chrono::steady_clock> t2;

  // Start timer
  t1 = chrono::steady_clock::now();

  // Access user_data structure
  UserData *udata = (UserData *) user_data;

  // Perform Jacobi iteration
  N_VProd(udata->d, r, z);

  // Stop timer
  t2 = chrono::steady_clock::now();

  // Update timer
  udata->psolvetime += chrono::duration<double>(t2 - t1).count();

  // Return success
  return 0;
}

// -----------------------------------------------------------------------------
// UserData and input functions
// -----------------------------------------------------------------------------

// Initialize memory allocated within Userdata
static int InitUserData(UserData *udata, SUNContext ctx)
{
  // SUNDIALS simulation context
  udata->ctx = ctx;

  // Diffusion coefficient
  udata->kx = ONE;
  udata->ky = ONE;

  // Enable forcing
  udata->forcing = true;

  // Final time
  udata->tf = ONE;

  // Upper bounds in x and y directions
  udata->xu = ONE;
  udata->yu = ONE;

  // Number of nodes in the x and y directions
  udata->nx    = 32;
  udata->ny    = 32;
  udata->nodes = udata->nx * udata->ny;

  // Mesh spacing in the x and y directions
  udata->dx = udata->xu / (udata->nx - 1);
  udata->dy = udata->yu / (udata->ny - 1);

  // MPI variables
  udata->comm_w = MPI_COMM_NULL;

  udata->nprocs_w = 1;

  // Integrator settings
  udata->rtol        = RCONST(1.e-5);   // relative tolerance
  udata->atol        = RCONST(1.e-10);  // absolute tolerance
  udata->order       = 3;               // method order
  udata->linear      = true;            // linearly implicit problem
  udata->diagnostics = false;           // output diagnostics

  // Linear solver and preconditioner options
  udata->pcg       = true;       // use PCG (true) or GMRES (false)
  udata->prec      = true;       // enable preconditioning
  udata->lsinfo    = false;      // output residual history
  udata->liniters  = 100;        // max linear iterations
  udata->msbp      = 0;          // use default (20 steps)
  udata->epslin    = ZERO;       // use default (0.05)

  // Inverse of Jacobian diagonal for preconditioner
  udata->d = NULL;

  // Output variables
  udata->output = 1;   // 0 = no output, 1 = stats output, 2 = output to disk
  udata->nout   = 20;  // Number of output times
  udata->e      = NULL;

  // Timing variables
  udata->timing     = false;
  udata->evolvetime = 0.0;
  udata->rhstime    = 0.0;
  udata->psetuptime = 0.0;
  udata->psolvetime = 0.0;
  udata->accesstime = 0.0;

  // Xbraid
  udata->x_tol           = 1.0e-6;
  udata->x_nt            = 300;
  udata->x_skip          = 1;
  udata->x_max_levels    = 15;
  udata->x_min_coarse    = 3;
  udata->x_nrelax        = 1;
  udata->x_nrelax0       = -1;
  udata->x_tnorm         = 2;
  udata->x_cfactor       = 2;
  udata->x_cfactor0      = -1;
  udata->x_max_iter      = 100;
  udata->x_storage       = -1;
  udata->x_print_level   = 1;
  udata->x_access_level  = 1;
  udata->x_rfactor_limit = 10;
  udata->x_rfactor_fail  = 4;
  udata->x_max_refine    = 8;
  udata->x_fmg           = false;
  udata->x_refine        = false;
  udata->x_initseq       = false;
  udata->x_reltol        = false;
  udata->x_init_u0       = false;

  // Return success
  return 0;
}

// Free memory allocated within Userdata
static int FreeUserData(UserData *udata)
{
  // Free preconditioner data
  if (udata->d)
  {
    N_VDestroy(udata->d);
    udata->d = NULL;
  }

  // Free error vector
  if (udata->e)
  {
    N_VDestroy(udata->e);
    udata->e = NULL;
  }

  // Return success
  return 0;
}

// Read command line inputs
static int ReadInputs(int *argc, char ***argv, UserData *udata, bool outproc)
{
  // Check for input args
  int arg_idx = 1;

  while (arg_idx < (*argc))
  {
    string arg = (*argv)[arg_idx++];

    // Mesh points
    if (arg == "--mesh")
    {
      udata->nx = stoi((*argv)[arg_idx++]);
      udata->ny = stoi((*argv)[arg_idx++]);
    }
    // Domain upper bounds
    else if (arg == "--domain")
    {
      udata->xu = stoi((*argv)[arg_idx++]);
      udata->yu = stoi((*argv)[arg_idx++]);
    }
    // Diffusion parameters
    else if (arg == "--k")
    {
      udata->kx = stod((*argv)[arg_idx++]);
      udata->ky = stod((*argv)[arg_idx++]);
    }
    // Disable forcing
    else if (arg == "--noforcing")
    {
      udata->forcing = false;
    }
    // Temporal domain settings
    else if (arg == "--tf")
    {
      udata->tf = stod((*argv)[arg_idx++]);
    }
    // Integrator settings
    else if (arg == "--rtol")
    {
      udata->rtol = stod((*argv)[arg_idx++]);
    }
    else if (arg == "--atol")
    {
      udata->atol = stod((*argv)[arg_idx++]);
    }
    else if (arg == "--order")
    {
      udata->order = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--nonlinear")
    {
      udata->linear = false;
    }
    else if (arg == "--diagnostics")
    {
      udata->diagnostics = true;
    }
    // Linear solver settings
    else if (arg == "--gmres")
    {
      udata->pcg = false;
    }
    else if (arg == "--lsinfo")
    {
      udata->lsinfo = true;
    }
    else if (arg == "--liniters")
    {
      udata->liniters = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--epslin")
    {
      udata->epslin = stod((*argv)[arg_idx++]);
    }
    // Preconditioner settings
    else if (arg == "--noprec")
    {
      udata->prec = false;
    }
    else if (arg == "--msbp")
    {
      udata->msbp = stoi((*argv)[arg_idx++]);
    }
    // XBraid settings
    else if (arg == "--x_tol")
    {
      udata->x_tol = stod((*argv)[arg_idx++]);
    }
    else if (arg == "--x_nt")
    {
      udata->x_nt = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_skip")
    {
      udata->x_skip = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_max_levels")
    {
      udata->x_max_levels = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_min_coarse")
    {
      udata->x_min_coarse = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_nrelax")
    {
      udata->x_nrelax = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_nrelax0")
    {
      udata->x_nrelax0 = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_tnorm")
    {
      udata->x_tnorm = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_cfactor")
    {
      udata->x_cfactor = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_cfactor0")
    {
      udata->x_cfactor0 = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_max_iter")
    {
      udata->x_max_iter = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_storage")
    {
      udata->x_storage = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_print_level")
    {
      udata->x_print_level = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_access_level")
    {
      udata->x_access_level = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_rfactor_limit")
    {
      udata->x_rfactor_limit = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_rfactor_fail")
    {
      udata->x_rfactor_fail = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_max_refine")
    {
      udata->x_max_refine = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--x_fmg")
    {
      udata->x_fmg = true;
    }
    else if (arg == "--x_refine")
    {
      udata->x_refine = true;
    }
    else if (arg == "--x_initseq")
    {
      udata->x_initseq = true;
    }
    else if (arg == "--x_reltol")
    {
      udata->x_reltol = true;
    }
    else if (arg == "--x_init_u0")
    {
      udata->x_init_u0 = true;
    }
    // Output settings
    else if (arg == "--output")
    {
      udata->output = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--nout")
    {
      udata->nout = stoi((*argv)[arg_idx++]);
    }
    else if (arg == "--timing")
    {
      udata->timing = true;
    }
    // Help
    else if (arg == "--help")
    {
      if (outproc) InputHelp();
      return -1;
    }
    // Unknown input
    else
    {
      if (outproc)
      {
        cerr << "ERROR: Invalid input " << arg << endl;
        InputHelp();
      }
      return -1;
    }
  }

  // Recompute total number of nodes
  udata->nodes = udata->nx * udata->ny;

  // Recompute x and y mesh spacing
  udata->dx = (udata->xu) / (udata->nx - 1);
  udata->dy = (udata->yu) / (udata->ny - 1);

  // If the method order is 1 the XBraid refinement must be disabled
  if (udata->order == 1 && !(udata->x_refine))
  {
    cerr << "ERROR: Method order 1 requires fixed time stepping" << endl;
    return -1;
  }

  // Return success
  return 0;
}

// -----------------------------------------------------------------------------
// Output and utility functions
// -----------------------------------------------------------------------------

// Compute the exact solution
static int Solution(realtype t, N_Vector u, UserData *udata)
{
  realtype x, y;
  realtype cos_sqr_t;
  realtype sin_sqr_x, sin_sqr_y;

  // Constants for computing solution
  cos_sqr_t = cos(PI * t) * cos(PI * t);

  // Initialize u to zero (handles boundary conditions)
  N_VConst(ZERO, u);

  realtype *uarray = N_VGetArrayPointer(u);
  if (check_flag((void *) uarray, "N_VGetArrayPointer", 0)) return -1;

  for (sunindextype j = 1; j < udata->ny - 1; j++)
  {
    for (sunindextype i = 1; i < udata->nx - 1; i++)
    {
      x = i * udata->dx;
      y = j * udata->dy;

      sin_sqr_x = sin(PI * x) * sin(PI * x);
      sin_sqr_y = sin(PI * y) * sin(PI * y);

      uarray[IDX(i,j,udata->nx)] = sin_sqr_x * sin_sqr_y * cos_sqr_t;
    }
  }

  return 0;
}

// Compute the solution error
static int SolutionError(realtype t, N_Vector u, N_Vector e, UserData *udata)
{
  // Compute true solution
  int flag = Solution(t, e, udata);
  if (flag != 0) return -1;

  // Compute absolute error
  N_VLinearSum(ONE, u, -ONE, e, e);
  N_VAbs(e, e);

  return 0;
}

// Print command line options
static void InputHelp()
{
  cout << endl;
  cout << "Command line options:" << endl;
  cout << "  --mesh <nx> <ny>        : mesh points in the x and y directions" << endl;
  cout << "  --domain <xu> <yu>      : domain upper bound in the x and y direction" << endl;
  cout << "  --k <kx> <ky>           : diffusion coefficients" << endl;
  cout << "  --noforcing             : disable forcing term" << endl;
  cout << "  --tf <time>             : final time" << endl;
  cout << "  --rtol <rtol>           : relative tolerance" << endl;
  cout << "  --atol <atol>           : absoltue tolerance" << endl;
  cout << "  --nonlinear             : disable linearly implicit flag" << endl;
  cout << "  --order <ord>           : method order" << endl;
  cout << "  --diagnostics           : output diagnostics" << endl;
  cout << "  --gmres                 : use GMRES linear solver" << endl;
  cout << "  --lsinfo                : output residual history" << endl;
  cout << "  --liniters <iters>      : max number of iterations" << endl;
  cout << "  --epslin <factor>       : linear tolerance factor" << endl;
  cout << "  --noprec                : disable preconditioner" << endl;
  cout << "  --msbp <steps>          : max steps between prec setups" << endl;
  cout << "  --x_tol <tol>           : XBraid stopping tolerance" << endl;
  cout << "  --x_nt <nt>             : Initial number of time grid values" << endl;
  cout << "  --x_skip <0,1>          : Skip all work on first down cycle" << endl;
  cout << "  --x_max_levels <max>    : Max number of multigrid levels " << endl;
  cout << "  --x_min_coarse <size>   : Minimum coarse grid size" << endl;
  cout << "  --x_nrelax <num>        : Number of relaxation sweeps" << endl;
  cout << "  --x_nrelax0 <num>       : Number of relaxation sweeps on level 0" << endl;
  cout << "  --x_tnorm <1,2,3>       : Choice of temporal norm " << endl;
  cout << "  --x_cfactor <fac>       : Coarsening factor" << endl;
  cout << "  --x_cfactor0 <fac>      : Coarsening factor on level 0" << endl;
  cout << "  --x_max_iter <max>      : Max number of multigrid iterations" << endl;
  cout << "  --x_storage <lev>       : Full storage on levels >= <lev>" << endl;
  cout << "  --x_print_level <lev>   : Set print level" << endl;
  cout << "  --x_access_level <lev>  : Set access level" << endl;
  cout << "  --x_rfactor_limit <fac> : Max refinement factor" << endl;
  cout << "  --x_rfactor_fail <fac>  : Solver failure refinement factor" << endl;
  cout << "  --x_max_refine <max>    : Max number of grid refinements" << endl;
  cout << "  --x_fmg                 : Use FMG (F-cycles)" << endl;
  cout << "  --x_refine              : Enable temporal refinement" << endl;
  cout << "  --x_initseq             : Initialize with sequential solution (debug)" << endl;
  cout << "  --x_reltol              : Use relative stopping tolerance" << endl;
  cout << "  --x_init_u0             : Initialize all times with u0" << endl;
  cout << "  --output <level>        : output level" << endl;
  cout << "  --nout <nout>           : number of outputs" << endl;
  cout << "  --timing                : print timing data" << endl;
  cout << "  --help                  : print this message and exit" << endl;
}

// Print user data
static int PrintUserData(UserData *udata)
{
  cout << endl;
  cout << "2D Heat PDE test problem:"                     << endl;
  cout << " --------------------------------- "           << endl;
  cout << "  nprocs         = " << udata->nprocs_w        << endl;
  cout << " --------------------------------- "           << endl;
  cout << "  kx             = " << udata->kx              << endl;
  cout << "  ky             = " << udata->ky              << endl;
  cout << "  forcing        = " << udata->forcing         << endl;
  cout << "  tf             = " << udata->tf              << endl;
  cout << "  xu             = " << udata->xu              << endl;
  cout << "  yu             = " << udata->yu              << endl;
  cout << "  nx             = " << udata->nx              << endl;
  cout << "  ny             = " << udata->ny              << endl;
  cout << "  dx             = " << udata->dx              << endl;
  cout << "  dy             = " << udata->dy              << endl;
  cout << " --------------------------------- "           << endl;
  cout << "  rtol           = " << udata->rtol            << endl;
  cout << "  atol           = " << udata->atol            << endl;
  cout << "  order          = " << udata->order           << endl;
  cout << "  linear         = " << udata->linear          << endl;
  cout << " --------------------------------- "           << endl;
  if (udata->pcg)
  {
    cout << "  linear solver  = PCG" << endl;
  }
  else
  {
    cout << "  linear solver  = GMRES" << endl;
  }
  cout << "  lin iters      = " << udata->liniters        << endl;
  cout << "  eps lin        = " << udata->epslin          << endl;
  cout << "  prec           = " << udata->prec            << endl;
  cout << "  msbp           = " << udata->msbp            << endl;
  cout << " --------------------------------- "           << endl;
  cout << "  nt             = " << udata->x_nt            << endl;
  cout << "  xtol           = " << udata->x_tol           << endl;
  cout << "  refine         = " << udata->x_refine        << endl;
  cout << "  rfactor limit  = " << udata->x_rfactor_limit << endl;
  cout << "  rfactor fail   = " << udata->x_rfactor_fail  << endl;
  cout << "  init seq       = " << udata->x_initseq       << endl;
  cout << "  print level    = " << udata->x_print_level   << endl;
  cout << "  access level   = " << udata->x_access_level  << endl;
  cout << " --------------------------------- "           << endl;
  cout << "  output         = " << udata->output          << endl;
  cout << " --------------------------------- "           << endl;
  cout << endl;

  return 0;
}

// Print integrator statistics
static int OutputStats(void *arkode_mem, UserData* udata)
{
  int flag;

  bool outproc = (udata->myid_w == 0);

  // Get integrator and solver stats
  long int nst, nst_a, netf, nfe, nfi, nni, ncfn, nli, nlcf, nsetups, nfi_ls, nJv;
  flag = ARKStepGetNumSteps(arkode_mem, &nst);
  if (check_flag(&flag, "ARKStepGetNumSteps", 1)) return -1;
  flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
  if (check_flag(&flag, "ARKStepGetNumStepAttempts", 1)) return -1;
  flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
  if (check_flag(&flag, "ARKStepGetNumErrTestFails", 1)) return -1;
  flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  if (check_flag(&flag, "ARKStepGetNumRhsEvals", 1)) return -1;
  flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
  if (check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1)) return -1;
  flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
  if (check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1)) return -1;
  flag = ARKStepGetNumLinIters(arkode_mem, &nli);
  if (check_flag(&flag, "ARKStepGetNumLinIters", 1)) return -1;
  flag = ARKStepGetNumLinConvFails(arkode_mem, &nlcf);
  if (check_flag(&flag, "ARKStepGetNumLinConvFails", 1)) return -1;
  flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
  if (check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1)) return -1;
  flag = ARKStepGetNumLinRhsEvals(arkode_mem, &nfi_ls);
  if (check_flag(&flag, "ARKStepGetNumLinRhsEvals", 1)) return -1;
  flag = ARKStepGetNumJtimesEvals(arkode_mem, &nJv);
  if (check_flag(&flag, "ARKStepGetNumJtimesEvals", 1)) return -1;

  // Reduce stats across time
  MPI_Allreduce(MPI_IN_PLACE, &nst,     1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nst_a,   1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &netf,    1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nfi,     1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nni,     1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &ncfn,    1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nli,     1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nlcf,    1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nsetups, 1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nfi_ls,  1, MPI_LONG, MPI_MAX, udata->comm_w);
  MPI_Allreduce(MPI_IN_PLACE, &nJv,     1, MPI_LONG, MPI_MAX, udata->comm_w);

  if (outproc)
  {
    cout << fixed;
    cout << setprecision(6);

    cout << "  Steps            = " << nst     << endl;
    cout << "  Step attempts    = " << nst_a   << endl;
    cout << "  Error test fails = " << netf    << endl;
    cout << "  RHS evals        = " << nfi     << endl;
    cout << "  NLS iters        = " << nni     << endl;
    cout << "  NLS fails        = " << ncfn    << endl;
    cout << "  LS iters         = " << nli     << endl;
    cout << "  LS fails         = " << nlcf    << endl;
    cout << "  LS setups        = " << nsetups << endl;
    cout << "  LS RHS evals     = " << nfi_ls  << endl;
    cout << "  Jv products      = " << nJv     << endl;
    cout << endl;

    // Compute average nls iters per step attempt and ls iters per nls iter
    realtype avgnli = (realtype) nni / (realtype) nst_a;
    realtype avgli  = (realtype) nli / (realtype) nni;
    cout << "  Avg NLS iters per step attempt = " << avgnli << endl;
    cout << "  Avg LS iters per NLS iter      = " << avgli  << endl;
    cout << endl;
  }

  // Get preconditioner stats
  if (udata->prec)
  {
    long int npe, nps;
    flag = ARKStepGetNumPrecEvals(arkode_mem, &npe);
    if (check_flag(&flag, "ARKStepGetNumPrecEvals", 1)) return -1;
    flag = ARKStepGetNumPrecSolves(arkode_mem, &nps);
    if (check_flag(&flag, "ARKStepGetNumPrecSolves", 1)) return -1;

    MPI_Allreduce(MPI_IN_PLACE, &npe, 1, MPI_LONG, MPI_MAX, udata->comm_w);
    MPI_Allreduce(MPI_IN_PLACE, &nps, 1, MPI_LONG, MPI_MAX, udata->comm_w);

    if (outproc)
    {
      cout << "  Preconditioner setups = " << npe << endl;
      cout << "  Preconditioner solves = " << nps << endl;
      cout << endl;
    }
  }

  return 0;
}

static int OutputTiming(UserData *udata)
{
  bool outproc = (udata->myid_w == 0);

  if (outproc)
  {
    cout << scientific;
    cout << setprecision(6);
  }

  double maxtime = 0.0;

  MPI_Reduce(&(udata->evolvetime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
             udata->comm_w);
  if (outproc)
  {
    cout << "  Evolve time   = " << maxtime << " sec" << endl;
  }

  MPI_Reduce(&(udata->rhstime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
             udata->comm_w);
  if (outproc)
  {
    cout << "  RHS time      = " << maxtime << " sec" << endl;
  }

  if (udata->prec)
  {
    MPI_Reduce(&(udata->psetuptime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
               udata->comm_w);
    if (outproc)
    {
      cout << "  PSetup time   = " << maxtime << " sec" << endl;
    }

    MPI_Reduce(&(udata->psolvetime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
               udata->comm_w);
    if (outproc)
    {
      cout << "  PSolve time   = " << maxtime << " sec" << endl;
      cout << endl;
    }
  }

  MPI_Reduce(&(udata->accesstime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
             udata->comm_w);
  if (outproc)
  {
    cout << "  Access time   = " << maxtime << " sec" << endl;
    cout << endl;
  }

  return 0;
}

// Check function return value
static int check_flag(void *flagvalue, const string funcname, int opt)
{
  // Check if the function returned a NULL pointer
  if (opt == 0)
  {
    if (flagvalue == NULL)
    {
      cerr << endl << "ERROR: " << funcname << " returned NULL pointer" << endl
           << endl;
      return 1;
    }
  }
  // Check the function return flag value
  else if (opt == 1 || opt == 2)
  {
    int errflag = *((int *) flagvalue);
    if  ((opt == 1 && errflag < 0) || (opt == 2 && errflag != 0))
    {
      cerr << endl << "ERROR: " << funcname << " returned with flag = "
           << errflag << endl << endl;
      return 1;
    }
  }
  else
  {
    cerr << endl << "ERROR: check_flag called with an invalid option value"
         << endl;
    return 1;
  }

  return 0;
}

//---- end of file ----