1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
|
/* -----------------------------------------------------------------------------
* Programmer(s): David J. Gardner @ LLNL
* -----------------------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------------------
* Example problem:
*
* The following test simulates a simple anisotropic 2D heat equation,
*
* u_t = kx u_xx + ky u_yy + b,
*
* for t in [0, 1] and (x,y) in [0, 1]^2, with initial conditions
*
* u(0,x,y) = sin^2(pi x) sin^2(pi y),
*
* stationary boundary conditions
*
* u_t(t,0,y) = u_t(t,1,y) = u_t(t,x,0) = u_t(t,x,1) = 0,
*
* and the heat source
*
* b(t,x,y) = -2 pi sin^2(pi x) sin^2(pi y) sin(pi t) cos(pi t)
* - kx 2 pi^2 (cos^2(pi x) - sin^2(pi x)) sin^2(pi y) cos^2(pi t)
* - ky 2 pi^2 (cos^2(pi y) - sin^2(pi y)) sin^2(pi x) cos^2(pi t).
*
* Under this setup, the problem has the analytical solution
*
* u(t,x,y) = sin^2(pi x) sin^2(pi y) cos^2(pi t).
*
* The spatial derivatives are computed using second-order centered differences,
* with the data distributed over nx * ny points on a uniform spatial grid. The
* problem is solved using the XBraid multigrid reduction in time library paired
* with a diagonally implicit Runge-Kutta method from the ARKODE ARKStep module
* using an inexact Newton method paired with the PCG or SPGMR linear solver.
* Several command line options are available to change the problem parameters
* and ARKStep settings. Use the flag --help for more information.
* ---------------------------------------------------------------------------*/
#include <cstdio>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <limits>
#include <chrono>
#include <cmath>
#include "arkode/arkode_arkstep.h" // access to ARKStep
#include "nvector/nvector_serial.h" // access to the serial N_Vector
#include "sunlinsol/sunlinsol_pcg.h" // access to PCG SUNLinearSolver
#include "sunlinsol/sunlinsol_spgmr.h" // access to SPGMR SUNLinearSolver
#include "mpi.h" // MPI header file
#include "braid.h" // access to XBraid
#include "arkode/arkode_xbraid.h" // access to ARKStep + XBraid interface
// Macros for problem constants
#define PI RCONST(3.141592653589793238462643383279502884197169)
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
#define EIGHT RCONST(8.0)
// Macro to access (x,y) location in 1D NVector array
#define IDX(x,y,n) ((n)*(y)+(x))
using namespace std;
// -----------------------------------------------------------------------------
// User data structure
// -----------------------------------------------------------------------------
struct UserData
{
// SUNDIALS simulation context
SUNContext ctx;
// Diffusion coefficients in the x and y directions
realtype kx;
realtype ky;
// Enable/disable forcing
bool forcing;
// Final time
realtype tf;
// Upper bounds in x and y directions
realtype xu;
realtype yu;
// Number of nodes in the x and y directions
sunindextype nx;
sunindextype ny;
// Total number of nodes
sunindextype nodes;
// Mesh spacing in the x and y directions
realtype dx;
realtype dy;
// MPI variables
MPI_Comm comm_w; // world communicator
int nprocs_w; // total number of MPI processes in Comm world
int myid_w; // process ID in space and time
// Integrator settings
realtype rtol; // relative tolerance
realtype atol; // absolute tolerance
int order; // ARKode method order
bool linear; // enable/disable linearly implicit option
bool diagnostics; // output diagnostics
// Linear solver and preconditioner settings
bool pcg; // use PCG (true) or GMRES (false)
bool prec; // preconditioner on/off
bool lsinfo; // output residual history
int liniters; // number of linear iterations
int msbp; // max number of steps between preconditioner setups
realtype epslin; // linear solver tolerance factor
// Inverse of Jacobian diagonal for preconditioner
N_Vector d;
// Ouput variables
int output; // output level
int nout; // number of output times
ofstream uout; // output file stream
ofstream eout; // error file stream
N_Vector e; // error vector
// Timing variables
bool timing; // print timings
double evolvetime;
double rhstime;
double psetuptime;
double psolvetime;
double accesstime;
// XBraid settings
realtype x_tol; // Xbraid stopping tolerance
int x_nt; // number of fine grid time points
int x_skip; // skip all work on first down cycle
int x_max_levels; // max number of levels
int x_min_coarse; // min possible coarse gird size
int x_nrelax; // number of CF relaxation sweeps on all levels
int x_nrelax0; // number of CF relaxation sweeps on level 0
int x_tnorm; // temporal stopping norm
int x_cfactor; // coarsening factor
int x_cfactor0; // coarsening factor on level 0
int x_max_iter; // max number of interations
int x_storage; // Full storage on levels >= storage
int x_print_level; // xbraid output level
int x_access_level; // access level
int x_rfactor_limit; // refinement factor limit
int x_rfactor_fail; // refinement factor on solver failure
int x_max_refine; // max number of refinements
bool x_fmg; // true = FMG cycle, false = V cycle
bool x_refine; // enable refinement with XBraid
bool x_initseq; // initialize with sequential solution
bool x_reltol; // use relative tolerance
bool x_init_u0; // initialize solution to initial condition
};
// -----------------------------------------------------------------------------
// Functions provided to XBraid
// -----------------------------------------------------------------------------
int MyInit(braid_App app, realtype t, braid_Vector *u_ptr);
int MyAccess(braid_App app, braid_Vector u, braid_AccessStatus astatus);
// -----------------------------------------------------------------------------
// Functions provided to the SUNDIALS integrator
// -----------------------------------------------------------------------------
// ODE right hand side function
static int f(realtype t, N_Vector u, N_Vector f, void *user_data);
// Preconditioner setup and solve functions
static int PSetup(realtype t, N_Vector u, N_Vector f, booleantype jok,
booleantype *jcurPtr, realtype gamma, void *user_data);
static int PSolve(realtype t, N_Vector u, N_Vector f, N_Vector r,
N_Vector z, realtype gamma, realtype delta, int lr,
void *user_data);
// -----------------------------------------------------------------------------
// UserData and input functions
// -----------------------------------------------------------------------------
// Set the default values in the UserData structure
static int InitUserData(UserData *udata, SUNContext ctx);
// Free memory allocated within UserData
static int FreeUserData(UserData *udata);
// Read the command line inputs and set UserData values
static int ReadInputs(int *argc, char ***argv, UserData *udata, bool outproc);
// -----------------------------------------------------------------------------
// Output and utility functions
// -----------------------------------------------------------------------------
// Compute the true solution
static int Solution(realtype t, N_Vector u, UserData *udata);
// Compute the solution error solution
static int SolutionError(realtype t, N_Vector u, N_Vector e, UserData *udata);
// Print the command line options
static void InputHelp();
// Print some UserData information
static int PrintUserData(UserData *udata);
// Print integration statistics
static int OutputStats(void *arkode_mem, UserData *udata);
// Print integration timing
static int OutputTiming(UserData *udata);
// Check function return values
static int check_flag(void *flagvalue, const string funcname, int opt);
// -----------------------------------------------------------------------------
// Main Program
// -----------------------------------------------------------------------------
int main(int argc, char* argv[])
{
int flag; // reusable error-checking flag
UserData *udata = NULL; // user data structure
N_Vector u = NULL; // vector for storing solution
SUNLinearSolver LS = NULL; // linear solver memory structure
void *arkode_mem = NULL; // ARKODE memory structure
FILE *diagfp = NULL; // diagnostics output file
braid_Core core = NULL; // XBraid memory structure
braid_App app = NULL; // ARKode + XBraid interface structure
// Timing variables
chrono::time_point<chrono::steady_clock> t1;
chrono::time_point<chrono::steady_clock> t2;
// MPI variables
MPI_Comm comm_w = MPI_COMM_WORLD; // MPI communicator
int myid; // MPI process ID
// Initialize MPI
flag = MPI_Init(&argc, &argv);
if (check_flag(&flag, "MPI_Init", 1)) return 1;
flag = MPI_Comm_rank(comm_w, &myid);
if (check_flag(&flag, "MPI_Comm_rank", 1)) return 1;
// Create the SUNDIALS context object for this simulation
SUNContext ctx;
flag = SUNContext_Create(NULL, &ctx);
if (check_flag(&flag, "SUNContext_Create", 1)) return 1;
// Set output process flag
bool outproc = (myid == 0);
// ---------------
// Setup UserData
// ---------------
// Allocate and initialize user data structure with default values. The
// defaults may be overwritten by command line inputs in ReadInputs below.
udata = new UserData;
flag = InitUserData(udata, ctx);
if (check_flag(&flag, "InitUserData", 1)) return 1;
// Parse command line inputs
flag = ReadInputs(&argc, &argv, udata, outproc);
if (flag != 0) return 1;
// Number of processes
int nprocs_w;
flag = MPI_Comm_size(comm_w, &nprocs_w);
if (check_flag(&flag, "MPI_Comm_size", 1)) return 1;
// Set communicator and number of processes in user data
udata->comm_w = comm_w;
udata->nprocs_w = nprocs_w;
udata->myid_w = myid;
// Output problem setup/options
if (outproc)
{
flag = PrintUserData(udata);
if (check_flag(&flag, "PrintUserData", 1)) return 1;
}
// Open diagnostics output file
if (udata->diagnostics || udata->lsinfo)
{
stringstream fname;
fname << "diagnostics." << setfill('0') << setw(5) << udata->myid_w
<< ".txt";
const std::string tmp = fname.str();
diagfp = fopen(tmp.c_str(), "w");
if (check_flag((void *) diagfp, "fopen", 0)) return 1;
}
// ----------------------
// Create serial vectors
// ----------------------
// Create vector for solution
u = N_VNew_Serial(udata->nodes, ctx);
if (check_flag((void *) u, "N_VNew_Parallel", 0)) return 1;
// Set initial condition
flag = Solution(ZERO, u, udata);
if (check_flag(&flag, "Solution", 1)) return 1;
// Create vector for error
udata->e = N_VClone(u);
if (check_flag((void *) (udata->e), "N_VClone", 0)) return 1;
// ---------------------
// Create linear solver
// ---------------------
// Create linear solver
int prectype = (udata->prec) ? SUN_PREC_RIGHT : SUN_PREC_NONE;
if (udata->pcg)
{
LS = SUNLinSol_PCG(u, prectype, udata->liniters, ctx);
if (check_flag((void *) LS, "SUNLinSol_PCG", 0)) return 1;
if (udata->lsinfo)
{
flag = SUNLinSolSetPrintLevel_PCG(LS, 1);
if (check_flag(&flag, "SUNLinSolSetPrintLevel_PCG", 1)) return(1);
flag = SUNLinSolSetInfoFile_PCG(LS, diagfp);
if (check_flag(&flag, "SUNLinSolSetInfoFile_PCG", 1)) return(1);
}
}
else
{
LS = SUNLinSol_SPGMR(u, prectype, udata->liniters, ctx);
if (check_flag((void *) LS, "SUNLinSol_SPGMR", 0)) return 1;
if (udata->lsinfo)
{
flag = SUNLinSolSetPrintLevel_SPGMR(LS, 1);
if (check_flag(&flag, "SUNLinSolSetPrintLevel_SPGMR", 1)) return(1);
flag = SUNLinSolSetInfoFile_SPGMR(LS, diagfp);
if (check_flag(&flag, "SUNLinSolSetInfoFile_SPGMR", 1)) return(1);
}
}
// Allocate preconditioner workspace
if (udata->prec)
{
udata->d = N_VClone(u);
if (check_flag((void *) (udata->d), "N_VClone", 0)) return 1;
}
// --------------
// Setup ARKStep
// --------------
// Create integrator
arkode_mem = ARKStepCreate(NULL, f, ZERO, u, ctx);
if (check_flag((void *) arkode_mem, "ARKStepCreate", 0)) return 1;
// Specify tolerances
flag = ARKStepSStolerances(arkode_mem, udata->rtol, udata->atol);
if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;
// Attach user data
flag = ARKStepSetUserData(arkode_mem, (void *) udata);
if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;
// Attach linear solver
flag = ARKStepSetLinearSolver(arkode_mem, LS, NULL);
if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
if (udata->prec)
{
// Attach preconditioner
flag = ARKStepSetPreconditioner(arkode_mem, PSetup, PSolve);
if (check_flag(&flag, "ARKStepSetPreconditioner", 1)) return 1;
// Set linear solver setup frequency (update preconditioner)
flag = ARKStepSetLSetupFrequency(arkode_mem, udata->msbp);
if (check_flag(&flag, "ARKStepSetLSetupFrequency", 1)) return 1;
}
// Set linear solver tolerance factor
flag = ARKStepSetEpsLin(arkode_mem, udata->epslin);
if (check_flag(&flag, "ARKStepSetEpsLin", 1)) return 1;
// Select method order
if (udata->order > 1)
{
// Use an ARKode provided table
flag = ARKStepSetOrder(arkode_mem, udata->order);
if (check_flag(&flag, "ARKStepSetOrder", 1)) return 1;
}
else
{
// Use implicit Euler (XBraid temporal refinement must be disabled)
realtype c[1], A[1], b[1];
ARKodeButcherTable B = NULL;
// Create implicit Euler Butcher table
c[0] = A[0] = b[0] = ONE;
B = ARKodeButcherTable_Create(1, 1, 0, c, A, b, NULL);
if (check_flag((void*) B, "ARKodeButcherTable_Create", 0)) return 1;
// Attach the Butcher table
flag = ARKStepSetTables(arkode_mem, 1, 0, B, NULL);
if (check_flag(&flag, "ARKStepSetTables", 1)) return 1;
// Free the Butcher table
ARKodeButcherTable_Free(B);
}
// Specify linearly implicit non-time-dependent RHS
if (udata->linear)
{
flag = ARKStepSetLinear(arkode_mem, 0);
if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;
}
// Set adaptive stepping (XBraid with temporal refinement) options
if (udata->x_refine)
{
// Use I controller
flag = ARKStepSetAdaptivityMethod(arkode_mem, ARK_ADAPT_I, 1, 0, NULL);
if (check_flag(&flag, "ARKStepSetAdaptivityMethod", 1)) return 1;
// Set the step size reduction factor limit (1 / refinement factor limit)
flag = ARKStepSetMinReduction(arkode_mem, ONE / udata->x_rfactor_limit);
if (check_flag(&flag, "ARKStepSetMinReduction", 1)) return 1;
// Set the failed solve step size reduction factor (1 / refinement factor)
flag = ARKStepSetMaxCFailGrowth(arkode_mem, ONE / udata->x_rfactor_fail);
if (check_flag(&flag, "ARKStepSetMaxCFailGrowth", 1)) return 1;
}
// Set diagnostics output file
if (udata->diagnostics)
{
flag = ARKStepSetDiagnostics(arkode_mem, diagfp);
if (check_flag(&flag, "ARKStepSetDiagnostics", 1)) return 1;
}
// ------------------------
// Create XBraid interface
// ------------------------
// Create the ARKStep + XBraid interface
flag = ARKBraid_Create(arkode_mem, &app);
if (check_flag(&flag, "ARKBraid_Create", 1)) return 1;
// Override the default initialization function
flag = ARKBraid_SetInitFn(app, MyInit);
if (check_flag(&flag, "ARKBraid_SetInitFn", 1)) return 1;
// Override the default access function
flag = ARKBraid_SetAccessFn(app, MyAccess);
if (check_flag(&flag, "ARKBraid_SetAccesFn", 1)) return 1;
// Initialize the ARKStep + XBraid interface
flag = ARKBraid_BraidInit(comm_w, comm_w, ZERO, udata->tf,
udata->x_nt, app, &core);
if (check_flag(&flag, "ARKBraid_BraidInit", 1)) return 1;
// ----------------------
// Set XBraid parameters
// ----------------------
flag = braid_SetTemporalNorm(core, udata->x_tnorm);
if (check_flag(&flag, "braid_SetTemporalNorm", 1)) return 1;
if (udata->x_reltol)
{
flag = braid_SetRelTol(core, udata->x_tol);
if (check_flag(&flag, "braid_SetRelTol", 1)) return 1;
}
else
{
// Since we are using the Euclidean 2-norm in space, scale the tolerance so
// it approximates to L2-norm.
realtype tolfactor;
if (udata->x_tnorm == 3)
{
// Infinity norm in time
tolfactor = sqrt(udata->nx * udata->ny);
}
else
{
// 2-norm in time
tolfactor = sqrt(udata->nx * udata->nx * udata->x_nt);
}
flag = braid_SetAbsTol(core, udata->x_tol * tolfactor);
if (check_flag(&flag, "braid_SetAbsTol", 1)) return 1;
}
flag = braid_SetSkip(core, udata->x_skip);
if (check_flag(&flag, "braid_SetSkip", 1)) return 1;
flag = braid_SetMaxLevels( core, udata->x_max_levels );
if (check_flag(&flag, "braid_SetMaxLevels", 1)) return 1;
flag = braid_SetMinCoarse( core, udata->x_min_coarse );
if (check_flag(&flag, "braid_SetMinCoarse", 1)) return 1;
flag = braid_SetNRelax(core, -1, udata->x_nrelax);
if (check_flag(&flag, "braid_SetNRelax", 1)) return 1;
if (udata->x_nrelax0 > -1)
{
flag = braid_SetNRelax(core, 0, udata->x_nrelax0);
if (check_flag(&flag, "braid_SetNRelax", 1)) return 1;
}
flag = braid_SetCFactor(core, -1, udata->x_cfactor);
if (check_flag(&flag, "braid_SetCFactor", 1)) return 1;
if (udata->x_cfactor0 > 0)
{
flag = braid_SetCFactor(core, 0, udata->x_cfactor0);
if (check_flag(&flag, "braid_SetCFactor", 1)) return 1;
}
flag = braid_SetMaxIter(core, udata->x_max_iter);
if (check_flag(&flag, "braid_SetMaxIter", 1)) return 1;
if (udata->x_fmg)
{
// Use F-cycles
flag = braid_SetFMG(core);
if (check_flag(&flag, "braid_SetFMG", 1)) return 1;
}
flag = braid_SetPrintLevel(core, udata->x_print_level);
if (check_flag(&flag, "braid_SetPrintLevel", 1)) return 1;
flag = braid_SetAccessLevel(core, udata->x_access_level);
if (check_flag(&flag, "braid_SetAccessLevel", 1)) return 1;
if (udata->x_initseq) {
flag = braid_SetSeqSoln(core, 1);
if (check_flag(&flag, "braid_SetSeqSoln", 1)) return 1;
}
// Temporal refinement
if (udata->x_refine)
{
// Enable refinement
flag = braid_SetRefine(core, 1);
if (check_flag(&flag, "braid_SetRefine", 1)) return 1;
// Set maximum number of refinements
flag = braid_SetMaxRefinements(core, udata->x_max_refine);
if (check_flag(&flag, "braid_SetMaxRefinements", 1)) return 1;
// Use F-cycles
flag = braid_SetFMG(core);
if (check_flag(&flag, "braid_SetFMG", 1)) return 1;
// Increase max levels after refinement
flag = braid_SetIncrMaxLevels(core);
if (check_flag(&flag, "braid_SetIncrMaxLevels", 1)) return 1;
}
// -----------------
// "Loop" over time
// -----------------
// Start timer
t1 = chrono::steady_clock::now();
// Evolve in time
flag = braid_Drive(core);
if (check_flag(&flag, "braid_Drive", 1)) return 1;
// Stop timer
t2 = chrono::steady_clock::now();
// Update timer
udata->evolvetime += chrono::duration<double>(t2 - t1).count();
// --------------
// Final outputs
// --------------
// Print final integrator stats
if (udata->output > 0)
{
if (outproc) cout << "Final max integrator statistics:" << endl;
flag = OutputStats(arkode_mem, udata);
if (check_flag(&flag, "OutputStats", 1)) return 1;
}
// Print timing
if (udata->timing)
{
flag = OutputTiming(udata);
if (check_flag(&flag, "OutputTiming", 1)) return 1;
}
// --------------------
// Clean up and return
// --------------------
if (udata->diagnostics || udata->lsinfo) fclose(diagfp);
ARKStepFree(&arkode_mem); // Free integrator memory
SUNLinSolFree(LS); // Free linear solver
N_VDestroy(u); // Free vectors
FreeUserData(udata); // Free user data
delete udata;
braid_Destroy(core); // Free braid memory
ARKBraid_Free(&app); // Free interface memory
SUNContext_Free(&ctx); // Free context
flag = MPI_Finalize(); // Finalize MPI
return 0;
}
// -----------------------------------------------------------------------------
// Functions provided to XBraid
// -----------------------------------------------------------------------------
// Create and initialize vectors
int MyInit(braid_App app, realtype t, braid_Vector *u_ptr)
{
int flag;
void *user_data;
UserData *udata;
// Get user data pointer
ARKBraid_GetUserData(app, &user_data);
udata = static_cast<UserData*>(user_data);
// Create new vector
N_Vector y = N_VNew_Serial(udata->nodes, udata->ctx);
flag = SUNBraidVector_New(y, u_ptr);
if (flag != 0) return 1;
// Set initial solution at all time points
if (t == ZERO)
{
flag = Solution(t, y, udata);
if (flag != 0) return 1;
}
else
{
N_VConst(ZERO, y);
}
return 0;
}
// Access XBraid and current vector
int MyAccess(braid_App app, braid_Vector u, braid_AccessStatus astatus)
{
int flag; // return flag
int iter; // current iteration number
int level; // current level
int done; // has XBraid finished
realtype t; // current time
void *user_data;
UserData *udata;
// Timing variables
chrono::time_point<chrono::steady_clock> t1;
chrono::time_point<chrono::steady_clock> t2;
// Start timer
t1 = chrono::steady_clock::now();
// Get user data pointer
ARKBraid_GetUserData(app, &user_data);
udata = static_cast<UserData*>(user_data);
// Get current time, iteration, level, and status
braid_AccessStatusGetTILD(astatus, &t, &iter, &level, &done);
// Output on fine level when XBraid has finished
if (level == 0 && done)
{
// Get current time index and number of fine grid points
int index;
int ntpts;
braid_AccessStatusGetTIndex(astatus, &index);
braid_AccessStatusGetNTPoints(astatus, &ntpts);
// Extract NVector
N_Vector y = NULL;
flag = SUNBraidVector_GetNVector(u, &y);
if (flag != 0) return 1;
// Write visualization files
if (udata->output == 2)
{
// Get output frequency (ensure the final time is output)
int qout = ntpts / udata->nout;
int rout = ntpts % udata->nout;
int nout = (rout > 0) ? udata->nout + 2 : udata->nout + 1;
// Output problem information
if (index == 0)
{
ofstream dout;
dout.open("heat2d_info.txt");
dout << "xu " << udata->xu << endl;
dout << "yu " << udata->yu << endl;
dout << "nx " << udata->nx << endl;
dout << "ny " << udata->ny << endl;
dout << "nt " << nout << endl;
dout.close();
}
// Output solution and error
if (!(index % qout) || index == ntpts)
{
// Open output streams
stringstream fname;
fname << "heat2d_solution."
<< setfill('0') << setw(6) << index / qout << ".txt";
udata->uout.open(fname.str());
udata->uout << scientific;
udata->uout << setprecision(numeric_limits<realtype>::digits10);
fname.str("");
fname.clear();
fname << "heat2d_error."
<< setfill('0') << setw(6) << index / qout << ".txt";
udata->eout.open(fname.str());
udata->eout << scientific;
udata->eout << setprecision(numeric_limits<realtype>::digits10);
// Compute the error
flag = SolutionError(t, y, udata->e, udata);
if (check_flag(&flag, "SolutionError", 1)) return 1;
// Output solution to disk
realtype *yarray = N_VGetArrayPointer(y);
if (check_flag((void *) yarray, "N_VGetArrayPointer", 0)) return -1;
udata->uout << t << " ";
for (sunindextype i = 0; i < udata->nodes; i++)
{
udata->uout << yarray[i] << " ";
}
udata->uout << endl;
// Output error to disk
realtype *earray = N_VGetArrayPointer(udata->e);
if (check_flag((void *) earray, "N_VGetArrayPointer", 0)) return -1;
udata->eout << t << " ";
for (sunindextype i = 0; i < udata->nodes; i++)
{
udata->eout << earray[i] << " ";
}
udata->eout << endl;
// Close output streams
udata->uout.close();
udata->eout.close();
}
}
// Output final error
if (index == ntpts)
{
// Compute the max error
flag = SolutionError(t, y, udata->e, udata);
if (check_flag(&flag, "SolutionError", 1)) return 1;
realtype maxerr = N_VMaxNorm(udata->e);
cout << scientific;
cout << setprecision(numeric_limits<realtype>::digits10);
cout << " Max error = " << maxerr << endl << endl;
}
}
// Stop timer
t2 = chrono::steady_clock::now();
// Update timing
udata->accesstime += chrono::duration<double>(t2 - t1).count();
return 0;
}
// -----------------------------------------------------------------------------
// Functions called by the integrator
// -----------------------------------------------------------------------------
// f routine to compute the ODE RHS function f(t,y).
static int f(realtype t, N_Vector u, N_Vector f, void *user_data)
{
// Timing variables
chrono::time_point<chrono::steady_clock> t1;
chrono::time_point<chrono::steady_clock> t2;
// Start timer
t1 = chrono::steady_clock::now();
// Access problem data
UserData *udata = (UserData *) user_data;
// Shortcuts to number of nodes
sunindextype nx = udata->nx;
sunindextype ny = udata->ny;
// Constants for computing diffusion term
realtype cx = udata->kx / (udata->dx * udata->dx);
realtype cy = udata->ky / (udata->dy * udata->dy);
realtype cc = -TWO * (cx + cy);
// Access data arrays
realtype *uarray = N_VGetArrayPointer(u);
if (check_flag((void *) uarray, "N_VGetArrayPointer", 0)) return -1;
realtype *farray = N_VGetArrayPointer(f);
if (check_flag((void *) farray, "N_VGetArrayPointer", 0)) return -1;
// Initialize rhs vector to zero (handles boundary conditions)
N_VConst(ZERO, f);
// Iterate over domain interior and compute rhs forcing term
if (udata->forcing)
{
realtype x, y;
realtype sin_sqr_x, sin_sqr_y;
realtype cos_sqr_x, cos_sqr_y;
realtype bx = (udata->kx) * TWO * PI * PI;
realtype by = (udata->ky) * TWO * PI * PI;
realtype sin_t_cos_t = sin(PI * t) * cos(PI * t);
realtype cos_sqr_t = cos(PI * t) * cos(PI * t);
for (sunindextype j = 1; j < ny - 1; j++)
{
for (sunindextype i = 1; i < nx - 1; i++)
{
x = i * udata->dx;
y = j * udata->dy;
sin_sqr_x = sin(PI * x) * sin(PI * x);
sin_sqr_y = sin(PI * y) * sin(PI * y);
cos_sqr_x = cos(PI * x) * cos(PI * x);
cos_sqr_y = cos(PI * y) * cos(PI * y);
farray[IDX(i,j,nx)] =
-TWO * PI * sin_sqr_x * sin_sqr_y * sin_t_cos_t
-bx * (cos_sqr_x - sin_sqr_x) * sin_sqr_y * cos_sqr_t
-by * (cos_sqr_y - sin_sqr_y) * sin_sqr_x * cos_sqr_t;
}
}
}
// Iterate over domain interior and add rhs diffusion term
for (sunindextype j = 1; j < ny - 1; j++)
{
for (sunindextype i = 1; i < nx - 1; i++)
{
farray[IDX(i,j,nx)] +=
cc * uarray[IDX(i,j,nx)]
+ cx * (uarray[IDX(i-1,j,nx)] + uarray[IDX(i+1,j,nx)])
+ cy * (uarray[IDX(i,j-1,nx)] + uarray[IDX(i,j+1,nx)]);
}
}
// Stop timer
t2 = chrono::steady_clock::now();
// Update timer
udata->rhstime += chrono::duration<double>(t2 - t1).count();
// Return success
return 0;
}
// Preconditioner setup routine
static int PSetup(realtype t, N_Vector u, N_Vector f, booleantype jok,
booleantype *jcurPtr, realtype gamma, void *user_data)
{
// Timing variables
chrono::time_point<chrono::steady_clock> t1;
chrono::time_point<chrono::steady_clock> t2;
// Start timer
t1 = chrono::steady_clock::now();
// Access problem data
UserData *udata = (UserData *) user_data;
// Access data array
realtype *diag = N_VGetArrayPointer(udata->d);
if (check_flag((void *) diag, "N_VGetArrayPointer", 0)) return -1;
// Constants for computing diffusion
realtype cx = udata->kx / (udata->dx * udata->dx);
realtype cy = udata->ky / (udata->dy * udata->dy);
realtype cc = -TWO * (cx + cy);
// Set all entries of d to the inverse diagonal values of interior
// (since boundary RHS is 0, set boundary diagonals to the same)
realtype c = ONE / (ONE - gamma * cc);
N_VConst(c, udata->d);
// Stop timer
t2 = chrono::steady_clock::now();
// Update timer
udata->psetuptime += chrono::duration<double>(t2 - t1).count();
// Return success
return 0;
}
// Preconditioner solve routine for Pz = r
static int PSolve(realtype t, N_Vector u, N_Vector f, N_Vector r,
N_Vector z, realtype gamma, realtype delta, int lr,
void *user_data)
{
// Timing variables
chrono::time_point<chrono::steady_clock> t1;
chrono::time_point<chrono::steady_clock> t2;
// Start timer
t1 = chrono::steady_clock::now();
// Access user_data structure
UserData *udata = (UserData *) user_data;
// Perform Jacobi iteration
N_VProd(udata->d, r, z);
// Stop timer
t2 = chrono::steady_clock::now();
// Update timer
udata->psolvetime += chrono::duration<double>(t2 - t1).count();
// Return success
return 0;
}
// -----------------------------------------------------------------------------
// UserData and input functions
// -----------------------------------------------------------------------------
// Initialize memory allocated within Userdata
static int InitUserData(UserData *udata, SUNContext ctx)
{
// SUNDIALS simulation context
udata->ctx = ctx;
// Diffusion coefficient
udata->kx = ONE;
udata->ky = ONE;
// Enable forcing
udata->forcing = true;
// Final time
udata->tf = ONE;
// Upper bounds in x and y directions
udata->xu = ONE;
udata->yu = ONE;
// Number of nodes in the x and y directions
udata->nx = 32;
udata->ny = 32;
udata->nodes = udata->nx * udata->ny;
// Mesh spacing in the x and y directions
udata->dx = udata->xu / (udata->nx - 1);
udata->dy = udata->yu / (udata->ny - 1);
// MPI variables
udata->comm_w = MPI_COMM_NULL;
udata->nprocs_w = 1;
// Integrator settings
udata->rtol = RCONST(1.e-5); // relative tolerance
udata->atol = RCONST(1.e-10); // absolute tolerance
udata->order = 3; // method order
udata->linear = true; // linearly implicit problem
udata->diagnostics = false; // output diagnostics
// Linear solver and preconditioner options
udata->pcg = true; // use PCG (true) or GMRES (false)
udata->prec = true; // enable preconditioning
udata->lsinfo = false; // output residual history
udata->liniters = 100; // max linear iterations
udata->msbp = 0; // use default (20 steps)
udata->epslin = ZERO; // use default (0.05)
// Inverse of Jacobian diagonal for preconditioner
udata->d = NULL;
// Output variables
udata->output = 1; // 0 = no output, 1 = stats output, 2 = output to disk
udata->nout = 20; // Number of output times
udata->e = NULL;
// Timing variables
udata->timing = false;
udata->evolvetime = 0.0;
udata->rhstime = 0.0;
udata->psetuptime = 0.0;
udata->psolvetime = 0.0;
udata->accesstime = 0.0;
// Xbraid
udata->x_tol = 1.0e-6;
udata->x_nt = 300;
udata->x_skip = 1;
udata->x_max_levels = 15;
udata->x_min_coarse = 3;
udata->x_nrelax = 1;
udata->x_nrelax0 = -1;
udata->x_tnorm = 2;
udata->x_cfactor = 2;
udata->x_cfactor0 = -1;
udata->x_max_iter = 100;
udata->x_storage = -1;
udata->x_print_level = 1;
udata->x_access_level = 1;
udata->x_rfactor_limit = 10;
udata->x_rfactor_fail = 4;
udata->x_max_refine = 8;
udata->x_fmg = false;
udata->x_refine = false;
udata->x_initseq = false;
udata->x_reltol = false;
udata->x_init_u0 = false;
// Return success
return 0;
}
// Free memory allocated within Userdata
static int FreeUserData(UserData *udata)
{
// Free preconditioner data
if (udata->d)
{
N_VDestroy(udata->d);
udata->d = NULL;
}
// Free error vector
if (udata->e)
{
N_VDestroy(udata->e);
udata->e = NULL;
}
// Return success
return 0;
}
// Read command line inputs
static int ReadInputs(int *argc, char ***argv, UserData *udata, bool outproc)
{
// Check for input args
int arg_idx = 1;
while (arg_idx < (*argc))
{
string arg = (*argv)[arg_idx++];
// Mesh points
if (arg == "--mesh")
{
udata->nx = stoi((*argv)[arg_idx++]);
udata->ny = stoi((*argv)[arg_idx++]);
}
// Domain upper bounds
else if (arg == "--domain")
{
udata->xu = stoi((*argv)[arg_idx++]);
udata->yu = stoi((*argv)[arg_idx++]);
}
// Diffusion parameters
else if (arg == "--k")
{
udata->kx = stod((*argv)[arg_idx++]);
udata->ky = stod((*argv)[arg_idx++]);
}
// Disable forcing
else if (arg == "--noforcing")
{
udata->forcing = false;
}
// Temporal domain settings
else if (arg == "--tf")
{
udata->tf = stod((*argv)[arg_idx++]);
}
// Integrator settings
else if (arg == "--rtol")
{
udata->rtol = stod((*argv)[arg_idx++]);
}
else if (arg == "--atol")
{
udata->atol = stod((*argv)[arg_idx++]);
}
else if (arg == "--order")
{
udata->order = stoi((*argv)[arg_idx++]);
}
else if (arg == "--nonlinear")
{
udata->linear = false;
}
else if (arg == "--diagnostics")
{
udata->diagnostics = true;
}
// Linear solver settings
else if (arg == "--gmres")
{
udata->pcg = false;
}
else if (arg == "--lsinfo")
{
udata->lsinfo = true;
}
else if (arg == "--liniters")
{
udata->liniters = stoi((*argv)[arg_idx++]);
}
else if (arg == "--epslin")
{
udata->epslin = stod((*argv)[arg_idx++]);
}
// Preconditioner settings
else if (arg == "--noprec")
{
udata->prec = false;
}
else if (arg == "--msbp")
{
udata->msbp = stoi((*argv)[arg_idx++]);
}
// XBraid settings
else if (arg == "--x_tol")
{
udata->x_tol = stod((*argv)[arg_idx++]);
}
else if (arg == "--x_nt")
{
udata->x_nt = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_skip")
{
udata->x_skip = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_max_levels")
{
udata->x_max_levels = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_min_coarse")
{
udata->x_min_coarse = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_nrelax")
{
udata->x_nrelax = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_nrelax0")
{
udata->x_nrelax0 = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_tnorm")
{
udata->x_tnorm = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_cfactor")
{
udata->x_cfactor = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_cfactor0")
{
udata->x_cfactor0 = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_max_iter")
{
udata->x_max_iter = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_storage")
{
udata->x_storage = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_print_level")
{
udata->x_print_level = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_access_level")
{
udata->x_access_level = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_rfactor_limit")
{
udata->x_rfactor_limit = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_rfactor_fail")
{
udata->x_rfactor_fail = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_max_refine")
{
udata->x_max_refine = stoi((*argv)[arg_idx++]);
}
else if (arg == "--x_fmg")
{
udata->x_fmg = true;
}
else if (arg == "--x_refine")
{
udata->x_refine = true;
}
else if (arg == "--x_initseq")
{
udata->x_initseq = true;
}
else if (arg == "--x_reltol")
{
udata->x_reltol = true;
}
else if (arg == "--x_init_u0")
{
udata->x_init_u0 = true;
}
// Output settings
else if (arg == "--output")
{
udata->output = stoi((*argv)[arg_idx++]);
}
else if (arg == "--nout")
{
udata->nout = stoi((*argv)[arg_idx++]);
}
else if (arg == "--timing")
{
udata->timing = true;
}
// Help
else if (arg == "--help")
{
if (outproc) InputHelp();
return -1;
}
// Unknown input
else
{
if (outproc)
{
cerr << "ERROR: Invalid input " << arg << endl;
InputHelp();
}
return -1;
}
}
// Recompute total number of nodes
udata->nodes = udata->nx * udata->ny;
// Recompute x and y mesh spacing
udata->dx = (udata->xu) / (udata->nx - 1);
udata->dy = (udata->yu) / (udata->ny - 1);
// If the method order is 1 the XBraid refinement must be disabled
if (udata->order == 1 && !(udata->x_refine))
{
cerr << "ERROR: Method order 1 requires fixed time stepping" << endl;
return -1;
}
// Return success
return 0;
}
// -----------------------------------------------------------------------------
// Output and utility functions
// -----------------------------------------------------------------------------
// Compute the exact solution
static int Solution(realtype t, N_Vector u, UserData *udata)
{
realtype x, y;
realtype cos_sqr_t;
realtype sin_sqr_x, sin_sqr_y;
// Constants for computing solution
cos_sqr_t = cos(PI * t) * cos(PI * t);
// Initialize u to zero (handles boundary conditions)
N_VConst(ZERO, u);
realtype *uarray = N_VGetArrayPointer(u);
if (check_flag((void *) uarray, "N_VGetArrayPointer", 0)) return -1;
for (sunindextype j = 1; j < udata->ny - 1; j++)
{
for (sunindextype i = 1; i < udata->nx - 1; i++)
{
x = i * udata->dx;
y = j * udata->dy;
sin_sqr_x = sin(PI * x) * sin(PI * x);
sin_sqr_y = sin(PI * y) * sin(PI * y);
uarray[IDX(i,j,udata->nx)] = sin_sqr_x * sin_sqr_y * cos_sqr_t;
}
}
return 0;
}
// Compute the solution error
static int SolutionError(realtype t, N_Vector u, N_Vector e, UserData *udata)
{
// Compute true solution
int flag = Solution(t, e, udata);
if (flag != 0) return -1;
// Compute absolute error
N_VLinearSum(ONE, u, -ONE, e, e);
N_VAbs(e, e);
return 0;
}
// Print command line options
static void InputHelp()
{
cout << endl;
cout << "Command line options:" << endl;
cout << " --mesh <nx> <ny> : mesh points in the x and y directions" << endl;
cout << " --domain <xu> <yu> : domain upper bound in the x and y direction" << endl;
cout << " --k <kx> <ky> : diffusion coefficients" << endl;
cout << " --noforcing : disable forcing term" << endl;
cout << " --tf <time> : final time" << endl;
cout << " --rtol <rtol> : relative tolerance" << endl;
cout << " --atol <atol> : absoltue tolerance" << endl;
cout << " --nonlinear : disable linearly implicit flag" << endl;
cout << " --order <ord> : method order" << endl;
cout << " --diagnostics : output diagnostics" << endl;
cout << " --gmres : use GMRES linear solver" << endl;
cout << " --lsinfo : output residual history" << endl;
cout << " --liniters <iters> : max number of iterations" << endl;
cout << " --epslin <factor> : linear tolerance factor" << endl;
cout << " --noprec : disable preconditioner" << endl;
cout << " --msbp <steps> : max steps between prec setups" << endl;
cout << " --x_tol <tol> : XBraid stopping tolerance" << endl;
cout << " --x_nt <nt> : Initial number of time grid values" << endl;
cout << " --x_skip <0,1> : Skip all work on first down cycle" << endl;
cout << " --x_max_levels <max> : Max number of multigrid levels " << endl;
cout << " --x_min_coarse <size> : Minimum coarse grid size" << endl;
cout << " --x_nrelax <num> : Number of relaxation sweeps" << endl;
cout << " --x_nrelax0 <num> : Number of relaxation sweeps on level 0" << endl;
cout << " --x_tnorm <1,2,3> : Choice of temporal norm " << endl;
cout << " --x_cfactor <fac> : Coarsening factor" << endl;
cout << " --x_cfactor0 <fac> : Coarsening factor on level 0" << endl;
cout << " --x_max_iter <max> : Max number of multigrid iterations" << endl;
cout << " --x_storage <lev> : Full storage on levels >= <lev>" << endl;
cout << " --x_print_level <lev> : Set print level" << endl;
cout << " --x_access_level <lev> : Set access level" << endl;
cout << " --x_rfactor_limit <fac> : Max refinement factor" << endl;
cout << " --x_rfactor_fail <fac> : Solver failure refinement factor" << endl;
cout << " --x_max_refine <max> : Max number of grid refinements" << endl;
cout << " --x_fmg : Use FMG (F-cycles)" << endl;
cout << " --x_refine : Enable temporal refinement" << endl;
cout << " --x_initseq : Initialize with sequential solution (debug)" << endl;
cout << " --x_reltol : Use relative stopping tolerance" << endl;
cout << " --x_init_u0 : Initialize all times with u0" << endl;
cout << " --output <level> : output level" << endl;
cout << " --nout <nout> : number of outputs" << endl;
cout << " --timing : print timing data" << endl;
cout << " --help : print this message and exit" << endl;
}
// Print user data
static int PrintUserData(UserData *udata)
{
cout << endl;
cout << "2D Heat PDE test problem:" << endl;
cout << " --------------------------------- " << endl;
cout << " nprocs = " << udata->nprocs_w << endl;
cout << " --------------------------------- " << endl;
cout << " kx = " << udata->kx << endl;
cout << " ky = " << udata->ky << endl;
cout << " forcing = " << udata->forcing << endl;
cout << " tf = " << udata->tf << endl;
cout << " xu = " << udata->xu << endl;
cout << " yu = " << udata->yu << endl;
cout << " nx = " << udata->nx << endl;
cout << " ny = " << udata->ny << endl;
cout << " dx = " << udata->dx << endl;
cout << " dy = " << udata->dy << endl;
cout << " --------------------------------- " << endl;
cout << " rtol = " << udata->rtol << endl;
cout << " atol = " << udata->atol << endl;
cout << " order = " << udata->order << endl;
cout << " linear = " << udata->linear << endl;
cout << " --------------------------------- " << endl;
if (udata->pcg)
{
cout << " linear solver = PCG" << endl;
}
else
{
cout << " linear solver = GMRES" << endl;
}
cout << " lin iters = " << udata->liniters << endl;
cout << " eps lin = " << udata->epslin << endl;
cout << " prec = " << udata->prec << endl;
cout << " msbp = " << udata->msbp << endl;
cout << " --------------------------------- " << endl;
cout << " nt = " << udata->x_nt << endl;
cout << " xtol = " << udata->x_tol << endl;
cout << " refine = " << udata->x_refine << endl;
cout << " rfactor limit = " << udata->x_rfactor_limit << endl;
cout << " rfactor fail = " << udata->x_rfactor_fail << endl;
cout << " init seq = " << udata->x_initseq << endl;
cout << " print level = " << udata->x_print_level << endl;
cout << " access level = " << udata->x_access_level << endl;
cout << " --------------------------------- " << endl;
cout << " output = " << udata->output << endl;
cout << " --------------------------------- " << endl;
cout << endl;
return 0;
}
// Print integrator statistics
static int OutputStats(void *arkode_mem, UserData* udata)
{
int flag;
bool outproc = (udata->myid_w == 0);
// Get integrator and solver stats
long int nst, nst_a, netf, nfe, nfi, nni, ncfn, nli, nlcf, nsetups, nfi_ls, nJv;
flag = ARKStepGetNumSteps(arkode_mem, &nst);
if (check_flag(&flag, "ARKStepGetNumSteps", 1)) return -1;
flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
if (check_flag(&flag, "ARKStepGetNumStepAttempts", 1)) return -1;
flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
if (check_flag(&flag, "ARKStepGetNumErrTestFails", 1)) return -1;
flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
if (check_flag(&flag, "ARKStepGetNumRhsEvals", 1)) return -1;
flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
if (check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1)) return -1;
flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
if (check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1)) return -1;
flag = ARKStepGetNumLinIters(arkode_mem, &nli);
if (check_flag(&flag, "ARKStepGetNumLinIters", 1)) return -1;
flag = ARKStepGetNumLinConvFails(arkode_mem, &nlcf);
if (check_flag(&flag, "ARKStepGetNumLinConvFails", 1)) return -1;
flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
if (check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1)) return -1;
flag = ARKStepGetNumLinRhsEvals(arkode_mem, &nfi_ls);
if (check_flag(&flag, "ARKStepGetNumLinRhsEvals", 1)) return -1;
flag = ARKStepGetNumJtimesEvals(arkode_mem, &nJv);
if (check_flag(&flag, "ARKStepGetNumJtimesEvals", 1)) return -1;
// Reduce stats across time
MPI_Allreduce(MPI_IN_PLACE, &nst, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nst_a, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &netf, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nfi, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nni, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &ncfn, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nli, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nlcf, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nsetups, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nfi_ls, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nJv, 1, MPI_LONG, MPI_MAX, udata->comm_w);
if (outproc)
{
cout << fixed;
cout << setprecision(6);
cout << " Steps = " << nst << endl;
cout << " Step attempts = " << nst_a << endl;
cout << " Error test fails = " << netf << endl;
cout << " RHS evals = " << nfi << endl;
cout << " NLS iters = " << nni << endl;
cout << " NLS fails = " << ncfn << endl;
cout << " LS iters = " << nli << endl;
cout << " LS fails = " << nlcf << endl;
cout << " LS setups = " << nsetups << endl;
cout << " LS RHS evals = " << nfi_ls << endl;
cout << " Jv products = " << nJv << endl;
cout << endl;
// Compute average nls iters per step attempt and ls iters per nls iter
realtype avgnli = (realtype) nni / (realtype) nst_a;
realtype avgli = (realtype) nli / (realtype) nni;
cout << " Avg NLS iters per step attempt = " << avgnli << endl;
cout << " Avg LS iters per NLS iter = " << avgli << endl;
cout << endl;
}
// Get preconditioner stats
if (udata->prec)
{
long int npe, nps;
flag = ARKStepGetNumPrecEvals(arkode_mem, &npe);
if (check_flag(&flag, "ARKStepGetNumPrecEvals", 1)) return -1;
flag = ARKStepGetNumPrecSolves(arkode_mem, &nps);
if (check_flag(&flag, "ARKStepGetNumPrecSolves", 1)) return -1;
MPI_Allreduce(MPI_IN_PLACE, &npe, 1, MPI_LONG, MPI_MAX, udata->comm_w);
MPI_Allreduce(MPI_IN_PLACE, &nps, 1, MPI_LONG, MPI_MAX, udata->comm_w);
if (outproc)
{
cout << " Preconditioner setups = " << npe << endl;
cout << " Preconditioner solves = " << nps << endl;
cout << endl;
}
}
return 0;
}
static int OutputTiming(UserData *udata)
{
bool outproc = (udata->myid_w == 0);
if (outproc)
{
cout << scientific;
cout << setprecision(6);
}
double maxtime = 0.0;
MPI_Reduce(&(udata->evolvetime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
udata->comm_w);
if (outproc)
{
cout << " Evolve time = " << maxtime << " sec" << endl;
}
MPI_Reduce(&(udata->rhstime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
udata->comm_w);
if (outproc)
{
cout << " RHS time = " << maxtime << " sec" << endl;
}
if (udata->prec)
{
MPI_Reduce(&(udata->psetuptime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
udata->comm_w);
if (outproc)
{
cout << " PSetup time = " << maxtime << " sec" << endl;
}
MPI_Reduce(&(udata->psolvetime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
udata->comm_w);
if (outproc)
{
cout << " PSolve time = " << maxtime << " sec" << endl;
cout << endl;
}
}
MPI_Reduce(&(udata->accesstime), &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0,
udata->comm_w);
if (outproc)
{
cout << " Access time = " << maxtime << " sec" << endl;
cout << endl;
}
return 0;
}
// Check function return value
static int check_flag(void *flagvalue, const string funcname, int opt)
{
// Check if the function returned a NULL pointer
if (opt == 0)
{
if (flagvalue == NULL)
{
cerr << endl << "ERROR: " << funcname << " returned NULL pointer" << endl
<< endl;
return 1;
}
}
// Check the function return flag value
else if (opt == 1 || opt == 2)
{
int errflag = *((int *) flagvalue);
if ((opt == 1 && errflag < 0) || (opt == 2 && errflag != 0))
{
cerr << endl << "ERROR: " << funcname << " returned with flag = "
<< errflag << endl << endl;
return 1;
}
}
else
{
cerr << endl << "ERROR: check_flag called with an invalid option value"
<< endl;
return 1;
}
return 0;
}
//---- end of file ----
|