File: ark_analytic.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (294 lines) | stat: -rw-r--r-- 11,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*-----------------------------------------------------------------
 * Programmer(s): Daniel R. Reynolds @ SMU
 *---------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 *---------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem with analytical
 * solution,
 *    dy/dt = lamda*y + 1/(1+t^2) - lamda*atan(t)
 * for t in the interval [0.0, 10.0], with initial condition: y=0.
 *
 * The stiffness of the problem is directly proportional to the
 * value of "lamda".  The value of lamda should be negative to
 * result in a well-posed ODE; for values with magnitude larger
 * than 100 the problem becomes quite stiff.
 *
 * This program solves the problem with the DIRK method,
 * Newton iteration with the dense SUNLinearSolver, and a
 * user-supplied Jacobian routine.
 * Output is printed every 1.0 units of time (10 total).
 * Run statistics (optional outputs) are printed at the end.
 *-----------------------------------------------------------------*/

/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_arkstep.h>         /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_serial.h>        /* serial N_Vector types, fcts., macros */
#include <sunmatrix/sunmatrix_dense.h>     /* access to dense SUNMatrix            */
#include <sunlinsol/sunlinsol_dense.h>     /* access to dense SUNLinearSolver      */
#include <sundials/sundials_types.h>       /* definition of type realtype          */

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);

/* Private function to check computed solution */
static int check_ans(N_Vector y, realtype t, realtype rtol, realtype atol);

/* Main Program */
int main()
{
  /* general problem parameters */
  realtype T0 = RCONST(0.0);         /* initial time */
  realtype Tf = RCONST(10.0);        /* final time */
  realtype dTout = RCONST(1.0);      /* time between outputs */
  sunindextype NEQ = 1;              /* number of dependent vars. */
  realtype reltol = RCONST(1.0e-6);  /* tolerances */
  realtype abstol = RCONST(1.0e-10);
  realtype lamda  = RCONST(-100.0);  /* stiffness parameter */

  /* general problem variables */
  int flag;                       /* reusable error-checking flag */
  N_Vector y = NULL;              /* empty vector for storing solution */
  SUNMatrix A = NULL;             /* empty matrix for linear solver */
  SUNLinearSolver LS = NULL;      /* empty linear solver object */
  void *arkode_mem = NULL;        /* empty ARKode memory structure */
  FILE *UFID;
  realtype t, tout;
  long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf;

  /* Create the SUNDIALS context object for this simulation */
  SUNContext ctx;
  flag = SUNContext_Create(NULL, &ctx);
  if (check_flag(&flag, "SUNContext_Create", 1)) return 1;

  /* Initial diagnostics output */
  printf("\nAnalytical ODE test problem:\n");
  printf("    lamda = %"GSYM"\n",    lamda);
  printf("   reltol = %.1"ESYM"\n",  reltol);
  printf("   abstol = %.1"ESYM"\n\n",abstol);

  /* Initialize data structures */
  y = N_VNew_Serial(NEQ, ctx);          /* Create serial vector for solution */
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1;
  N_VConst(RCONST(0.0), y);        /* Specify initial condition */

  /* Call ARKStepCreate to initialize the ARK timestepper module and
     specify the right-hand side function in y'=f(t,y), the inital time
     T0, and the initial dependent variable vector y.  Note: since this
     problem is fully implicit, we set f_E to NULL and f_I to f. */
  arkode_mem = ARKStepCreate(NULL, f, T0, y, ctx);
  if (check_flag((void *)arkode_mem, "ARKStepCreate", 0)) return 1;

  /* Set routines */
  flag = ARKStepSetUserData(arkode_mem, (void *) &lamda);  /* Pass lamda to user functions */
  if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;
  flag = ARKStepSStolerances(arkode_mem, reltol, abstol);  /* Specify tolerances */
  if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;

  /* Initialize dense matrix data structure and solver */
  A = SUNDenseMatrix(NEQ, NEQ, ctx);
  if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1;
  LS = SUNLinSol_Dense(y, A, ctx);
  if (check_flag((void *)LS, "SUNLinSol_Dense", 0)) return 1;

  /* Linear solver interface */
  flag = ARKStepSetLinearSolver(arkode_mem, LS, A);        /* Attach matrix and linear solver */
  if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
  flag = ARKStepSetJacFn(arkode_mem, Jac);                 /* Set Jacobian routine */
  if (check_flag(&flag, "ARKStepSetJacFn", 1)) return 1;

  /* Specify linearly implicit RHS, with non-time-dependent Jacobian */
  flag = ARKStepSetLinear(arkode_mem, 0);
  if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;

  /* Open output stream for results, output comment line */
  UFID = fopen("solution.txt","w");
  fprintf(UFID,"# t u\n");

  /* output initial condition to disk */
  fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0));

  /* Main time-stepping loop: calls ARKStepEvolve to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  tout = T0+dTout;
  printf("        t           u\n");
  printf("   ---------------------\n");
  while (Tf - t > 1.0e-15) {

    flag = ARKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);      /* call integrator */
    if (check_flag(&flag, "ARKStepEvolve", 1)) break;
    printf("  %10.6"FSYM"  %10.6"FSYM"\n", t, NV_Ith_S(y,0));          /* access/print solution */
    fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0));
    if (flag >= 0) {                                         /* successful solve: update time */
      tout += dTout;
      tout = (tout > Tf) ? Tf : tout;
    } else {                                                 /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }
  }
  printf("   ---------------------\n");
  fclose(UFID);

  /* Get/print some final statistics on how the solve progressed */
  flag = ARKStepGetNumSteps(arkode_mem, &nst);
  check_flag(&flag, "ARKStepGetNumSteps", 1);
  flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
  check_flag(&flag, "ARKStepGetNumStepAttempts", 1);
  flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  check_flag(&flag, "ARKStepGetNumRhsEvals", 1);
  flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
  check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1);
  flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
  check_flag(&flag, "ARKStepGetNumErrTestFails", 1);
  flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
  check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1);
  flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
  check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1);
  flag = ARKStepGetNumJacEvals(arkode_mem, &nje);
  check_flag(&flag, "ARKStepGetNumJacEvals", 1);
  flag = ARKStepGetNumLinRhsEvals(arkode_mem, &nfeLS);
  check_flag(&flag, "ARKStepGetNumLinRhsEvals", 1);

  printf("\nFinal Solver Statistics:\n");
  printf("   Internal solver steps = %li (attempted = %li)\n", nst, nst_a);
  printf("   Total RHS evals:  Fe = %li,  Fi = %li\n", nfe, nfi);
  printf("   Total linear solver setups = %li\n", nsetups);
  printf("   Total RHS evals for setting up the linear system = %li\n", nfeLS);
  printf("   Total number of Jacobian evaluations = %li\n", nje);
  printf("   Total number of Newton iterations = %li\n", nni);
  printf("   Total number of linear solver convergence failures = %li\n", ncfn);
  printf("   Total number of error test failures = %li\n\n", netf);

  /* check the solution error */
  flag = check_ans(y, t, reltol, abstol);

  /* Clean up and return */
  N_VDestroy(y);            /* Free y vector */
  ARKStepFree(&arkode_mem); /* Free integrator memory */
  SUNLinSolFree(LS);        /* Free linear solver */
  SUNMatDestroy(A);         /* Free A matrix */
  SUNContext_Free(&ctx);    /* Free context */

  return flag;
}

/*-------------------------------
 * Functions called by the solver
 *-------------------------------*/

/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype *rdata = (realtype *) user_data;   /* cast user_data to realtype */
  realtype lamda = rdata[0];                  /* set shortcut for stiffness parameter */
  realtype u = NV_Ith_S(y,0);                 /* access current solution value */

  /* fill in the RHS function: "NV_Ith_S" accesses the 0th entry of ydot */
  NV_Ith_S(ydot,0) = lamda*u + RCONST(1.0)/(RCONST(1.0)+t*t) - lamda*atan(t);

  return 0;                                   /* return with success */
}

/* Jacobian routine to compute J(t,y) = df/dy. */
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  realtype *rdata = (realtype *) user_data;   /* cast user_data to realtype */
  realtype lamda = rdata[0];                  /* set shortcut for stiffness parameter */
  realtype *Jdata = SUNDenseMatrix_Data(J);

  /* Fill in Jacobian of f: set the first entry of the data array to set the (0,0) entry */
  Jdata[0] = lamda;

  return 0;                                   /* return with success */
}

/*-------------------------------
 * Private helper functions
 *-------------------------------*/

/* Check function return value...
    opt == 0 means SUNDIALS function allocates memory so check if
             returned NULL pointer
    opt == 1 means SUNDIALS function returns a flag so check if
             flag >= 0
    opt == 2 means function allocates memory so check if returned
             NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
              funcname, *errflag);
      return 1; }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  return 0;
}

/* check the computed solution */
static int check_ans(N_Vector y, realtype t, realtype rtol, realtype atol)
{
  int      passfail=0;     /* answer pass (0) or fail (1) flag     */
  realtype ans, err, ewt;  /* answer data, error, and error weight */

  /* compute solution error */
  ans = atan(t);
  ewt = RCONST(1.0) / (rtol * fabs(ans) + atol);
  err = ewt * fabs(NV_Ith_S(y,0) - ans);

  /* is the solution within the tolerances? */
  passfail = (err < RCONST(1.0)) ? 0 : 1;

  if (passfail) {
    fprintf(stdout, "\nSUNDIALS_WARNING: check_ans error=%"GSYM"\n\n", err);
  }

  return(passfail);
}

/*---- end of file ----*/