1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*-----------------------------------------------------------------
* Programmer(s): Daniel R. Reynolds @ SMU
*---------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
*---------------------------------------------------------------
* Example problem:
*
* The following is a simple example problem with analytical
* solution,
* dy/dt = lamda*y + 1/(1+t^2) - lamda*atan(t)
* for t in the interval [0.0, 10.0], with initial condition: y=0.
*
* The stiffness of the problem is directly proportional to the
* value of "lamda". The value of lamda should be negative to
* result in a well-posed ODE; for values with magnitude larger
* than 100 the problem becomes quite stiff.
*
* This program solves the problem with the DIRK method,
* Newton iteration with the dense SUNLinearSolver, and a
* user-supplied Jacobian routine.
* Output is printed every 1.0 units of time (10 total).
* Run statistics (optional outputs) are printed at the end.
*-----------------------------------------------------------------*/
/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_arkstep.h> /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_serial.h> /* serial N_Vector types, fcts., macros */
#include <sunmatrix/sunmatrix_dense.h> /* access to dense SUNMatrix */
#include <sunlinsol/sunlinsol_dense.h> /* access to dense SUNLinearSolver */
#include <sundials/sundials_types.h> /* definition of type realtype */
#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif
/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);
/* Private function to check computed solution */
static int check_ans(N_Vector y, realtype t, realtype rtol, realtype atol);
/* Main Program */
int main()
{
/* general problem parameters */
realtype T0 = RCONST(0.0); /* initial time */
realtype Tf = RCONST(10.0); /* final time */
realtype dTout = RCONST(1.0); /* time between outputs */
sunindextype NEQ = 1; /* number of dependent vars. */
realtype reltol = RCONST(1.0e-6); /* tolerances */
realtype abstol = RCONST(1.0e-10);
realtype lamda = RCONST(-100.0); /* stiffness parameter */
/* general problem variables */
int flag; /* reusable error-checking flag */
N_Vector y = NULL; /* empty vector for storing solution */
SUNMatrix A = NULL; /* empty matrix for linear solver */
SUNLinearSolver LS = NULL; /* empty linear solver object */
void *arkode_mem = NULL; /* empty ARKode memory structure */
FILE *UFID;
realtype t, tout;
long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf;
/* Create the SUNDIALS context object for this simulation */
SUNContext ctx;
flag = SUNContext_Create(NULL, &ctx);
if (check_flag(&flag, "SUNContext_Create", 1)) return 1;
/* Initial diagnostics output */
printf("\nAnalytical ODE test problem:\n");
printf(" lamda = %"GSYM"\n", lamda);
printf(" reltol = %.1"ESYM"\n", reltol);
printf(" abstol = %.1"ESYM"\n\n",abstol);
/* Initialize data structures */
y = N_VNew_Serial(NEQ, ctx); /* Create serial vector for solution */
if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1;
N_VConst(RCONST(0.0), y); /* Specify initial condition */
/* Call ARKStepCreate to initialize the ARK timestepper module and
specify the right-hand side function in y'=f(t,y), the inital time
T0, and the initial dependent variable vector y. Note: since this
problem is fully implicit, we set f_E to NULL and f_I to f. */
arkode_mem = ARKStepCreate(NULL, f, T0, y, ctx);
if (check_flag((void *)arkode_mem, "ARKStepCreate", 0)) return 1;
/* Set routines */
flag = ARKStepSetUserData(arkode_mem, (void *) &lamda); /* Pass lamda to user functions */
if (check_flag(&flag, "ARKStepSetUserData", 1)) return 1;
flag = ARKStepSStolerances(arkode_mem, reltol, abstol); /* Specify tolerances */
if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;
/* Initialize dense matrix data structure and solver */
A = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1;
LS = SUNLinSol_Dense(y, A, ctx);
if (check_flag((void *)LS, "SUNLinSol_Dense", 0)) return 1;
/* Linear solver interface */
flag = ARKStepSetLinearSolver(arkode_mem, LS, A); /* Attach matrix and linear solver */
if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
flag = ARKStepSetJacFn(arkode_mem, Jac); /* Set Jacobian routine */
if (check_flag(&flag, "ARKStepSetJacFn", 1)) return 1;
/* Specify linearly implicit RHS, with non-time-dependent Jacobian */
flag = ARKStepSetLinear(arkode_mem, 0);
if (check_flag(&flag, "ARKStepSetLinear", 1)) return 1;
/* Open output stream for results, output comment line */
UFID = fopen("solution.txt","w");
fprintf(UFID,"# t u\n");
/* output initial condition to disk */
fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0));
/* Main time-stepping loop: calls ARKStepEvolve to perform the integration, then
prints results. Stops when the final time has been reached */
t = T0;
tout = T0+dTout;
printf(" t u\n");
printf(" ---------------------\n");
while (Tf - t > 1.0e-15) {
flag = ARKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL); /* call integrator */
if (check_flag(&flag, "ARKStepEvolve", 1)) break;
printf(" %10.6"FSYM" %10.6"FSYM"\n", t, NV_Ith_S(y,0)); /* access/print solution */
fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0));
if (flag >= 0) { /* successful solve: update time */
tout += dTout;
tout = (tout > Tf) ? Tf : tout;
} else { /* unsuccessful solve: break */
fprintf(stderr,"Solver failure, stopping integration\n");
break;
}
}
printf(" ---------------------\n");
fclose(UFID);
/* Get/print some final statistics on how the solve progressed */
flag = ARKStepGetNumSteps(arkode_mem, &nst);
check_flag(&flag, "ARKStepGetNumSteps", 1);
flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
check_flag(&flag, "ARKStepGetNumStepAttempts", 1);
flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
check_flag(&flag, "ARKStepGetNumRhsEvals", 1);
flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1);
flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
check_flag(&flag, "ARKStepGetNumErrTestFails", 1);
flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1);
flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1);
flag = ARKStepGetNumJacEvals(arkode_mem, &nje);
check_flag(&flag, "ARKStepGetNumJacEvals", 1);
flag = ARKStepGetNumLinRhsEvals(arkode_mem, &nfeLS);
check_flag(&flag, "ARKStepGetNumLinRhsEvals", 1);
printf("\nFinal Solver Statistics:\n");
printf(" Internal solver steps = %li (attempted = %li)\n", nst, nst_a);
printf(" Total RHS evals: Fe = %li, Fi = %li\n", nfe, nfi);
printf(" Total linear solver setups = %li\n", nsetups);
printf(" Total RHS evals for setting up the linear system = %li\n", nfeLS);
printf(" Total number of Jacobian evaluations = %li\n", nje);
printf(" Total number of Newton iterations = %li\n", nni);
printf(" Total number of linear solver convergence failures = %li\n", ncfn);
printf(" Total number of error test failures = %li\n\n", netf);
/* check the solution error */
flag = check_ans(y, t, reltol, abstol);
/* Clean up and return */
N_VDestroy(y); /* Free y vector */
ARKStepFree(&arkode_mem); /* Free integrator memory */
SUNLinSolFree(LS); /* Free linear solver */
SUNMatDestroy(A); /* Free A matrix */
SUNContext_Free(&ctx); /* Free context */
return flag;
}
/*-------------------------------
* Functions called by the solver
*-------------------------------*/
/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rdata = (realtype *) user_data; /* cast user_data to realtype */
realtype lamda = rdata[0]; /* set shortcut for stiffness parameter */
realtype u = NV_Ith_S(y,0); /* access current solution value */
/* fill in the RHS function: "NV_Ith_S" accesses the 0th entry of ydot */
NV_Ith_S(ydot,0) = lamda*u + RCONST(1.0)/(RCONST(1.0)+t*t) - lamda*atan(t);
return 0; /* return with success */
}
/* Jacobian routine to compute J(t,y) = df/dy. */
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
realtype *rdata = (realtype *) user_data; /* cast user_data to realtype */
realtype lamda = rdata[0]; /* set shortcut for stiffness parameter */
realtype *Jdata = SUNDenseMatrix_Data(J);
/* Fill in Jacobian of f: set the first entry of the data array to set the (0,0) entry */
Jdata[0] = lamda;
return 0; /* return with success */
}
/*-------------------------------
* Private helper functions
*-------------------------------*/
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns a flag so check if
flag >= 0
opt == 2 means function allocates memory so check if returned
NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
int *errflag;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && flagvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
/* Check if flag < 0 */
else if (opt == 1) {
errflag = (int *) flagvalue;
if (*errflag < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
funcname, *errflag);
return 1; }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && flagvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
return 0;
}
/* check the computed solution */
static int check_ans(N_Vector y, realtype t, realtype rtol, realtype atol)
{
int passfail=0; /* answer pass (0) or fail (1) flag */
realtype ans, err, ewt; /* answer data, error, and error weight */
/* compute solution error */
ans = atan(t);
ewt = RCONST(1.0) / (rtol * fabs(ans) + atol);
err = ewt * fabs(NV_Ith_S(y,0) - ans);
/* is the solution within the tolerances? */
passfail = (err < RCONST(1.0)) ? 0 : 1;
if (passfail) {
fprintf(stdout, "\nSUNDIALS_WARNING: check_ans error=%"GSYM"\n\n", err);
}
return(passfail);
}
/*---- end of file ----*/
|