File: ark_analytic_nonlin.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (193 lines) | stat: -rw-r--r-- 6,856 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*-----------------------------------------------------------------
 * Programmer(s): Daniel R. Reynolds @ SMU
 *---------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 *---------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem with analytical
 * solution,
 *     dy/dt = (t+1)*exp(-y)
 * for t in the interval [0.0, 10.0], with initial condition: y=0.
 * This has analytical solution
 *      y(t) = log(0.5*t^2 + t + 1)
 *
 * This program solves the problem with the ERK method.
 * Output is printed every 1.0 units of time (10 total).
 * Run statistics (optional outputs) are printed at the end.
 *-----------------------------------------------------------------*/

/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_erkstep.h>    /* prototypes for ERKStep fcts., consts */
#include <nvector/nvector_serial.h>   /* serial N_Vector types, fcts., macros */
#include <sundials/sundials_types.h>  /* def. of type 'realtype' */
#include <sundials/sundials_math.h>   /* def. of SUNRsqrt, etc. */

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);

/* Main Program */
int main()
{
  /* general problem parameters */
  realtype T0 = RCONST(0.0);     /* initial time */
  realtype Tf = RCONST(10.0);    /* final time */
  realtype dTout = RCONST(1.0);  /* time between outputs */
  sunindextype NEQ = 1;          /* number of dependent vars. */
  realtype reltol = 1.0e-6;      /* tolerances */
  realtype abstol = 1.0e-10;

  /* general problem variables */
  int flag;                      /* reusable error-checking flag */
  N_Vector y = NULL;             /* empty vector for storing solution */
  void *arkode_mem = NULL;       /* empty ARKode memory structure */
  FILE *UFID, *FID;
  realtype t, tout;

  /* Create the SUNDIALS context object for this simulation */
  SUNContext ctx;
  flag = SUNContext_Create(NULL, &ctx);
  if (check_flag(&flag, "SUNContext_Create", 1)) return 1;

  /* Initial problem output */
  printf("\nAnalytical ODE test problem:\n");
  printf("   reltol = %.1"ESYM"\n",  reltol);
  printf("   abstol = %.1"ESYM"\n\n",abstol);

  /* Initialize data structures */
  y = N_VNew_Serial(NEQ, ctx);          /* Create serial vector for solution */
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1;
  NV_Ith_S(y,0) = 0.0;             /* Specify initial condition */

  /* Call ERKStepCreate to initialize the ERK timestepper module and
     specify the right-hand side function in y'=f(t,y), the inital time
     T0, and the initial dependent variable vector y. */
  arkode_mem = ERKStepCreate(f, T0, y, ctx);
  if (check_flag((void *)arkode_mem, "ERKStepCreate", 0)) return 1;

  /* Specify tolerances */
  flag = ERKStepSStolerances(arkode_mem, reltol, abstol);
  if (check_flag(&flag, "ERKStepSStolerances", 1)) return 1;

  /* Open output stream for results, output comment line */
  UFID = fopen("solution.txt","w");
  fprintf(UFID,"# t u\n");

  /* output initial condition to disk */
  fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0));

  /* Main time-stepping loop: calls ERKStepEvolve to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  tout = T0+dTout;
  printf("        t           u\n");
  printf("   ---------------------\n");
  while (Tf - t > 1.0e-15) {

    flag = ERKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);       /* call integrator */
    if (check_flag(&flag, "ERKStepEvolve", 1)) break;
    printf("  %10.6"FSYM"  %10.6"FSYM"\n", t, NV_Ith_S(y,0));           /* access/print solution */
    fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0));
    if (flag >= 0) {                                          /* successful solve: update time */
      tout += dTout;
      tout = (tout > Tf) ? Tf : tout;
    } else {                                                  /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }
  }
  printf("   ---------------------\n");
  fclose(UFID);

  /* Print final statistics */
  printf("\nFinal Statistics:\n");
  flag = ERKStepPrintAllStats(arkode_mem, stdout, SUN_OUTPUTFORMAT_TABLE);

  /* Print final statistics to a file in CSV format */
  FID = fopen("ark_analytic_nonlin_stats.csv", "w");
  flag = ERKStepPrintAllStats(arkode_mem, FID, SUN_OUTPUTFORMAT_CSV);
  fclose(FID);

  /* Clean up and return with successful completion */
  N_VDestroy(y);               /* Free y vector */
  ERKStepFree(&arkode_mem);    /* Free integrator memory */
  SUNContext_Free(&ctx);       /* Free context */

  return 0;
}

/*-------------------------------
 * Functions called by the solver
 *-------------------------------*/

/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  NV_Ith_S(ydot,0) = (t+1.0)*SUNRexp(-NV_Ith_S(y,0));
  return 0;
}

/*-------------------------------
 * Private helper functions
 *-------------------------------*/

/* Check function return value...
    opt == 0 means SUNDIALS function allocates memory so check if
             returned NULL pointer
    opt == 1 means SUNDIALS function returns a flag so check if
             flag >= 0
    opt == 2 means function allocates memory so check if returned
             NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
              funcname, *errflag);
      return 1; }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  return 0;
}


/*---- end of file ----*/